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FOREWORD

On June 14-15, 1990, Technical Committee 7 (TC7) of the International Association for Pattern
Recognition (IAPR) held a Workshop on "Multisource Data Integration in Remote Sensing" in
College Park, Maryland. The original plan for this workshop was to place it in between two
major, related conferences: the International Geoscience and Remote Sensing Symposium
(IGARSS'90) at the end of May 1990, in College Park, MD; and the International Conference on
Pattern Recognition (ICPR'90) in mid-June 1990, in Atlantic City, NJ. Such a configuration of
two major conferences in geographically and temporally close range would have offered an
excellent opportunity to realize a major goal of TC7: to bring together scientists from remote
sensing applications and from the methodology of pattern recognition. Due to the postponement
of the ICPR'90, the time between the two conferences became too long to allow participants of
both conferences to attend the workshop by a short prolongation of their stay in the area. We
therefore moved the workshop close to the ICPR to at least partly reach our goal.

The subject of the workshop, Multisource Data Integration in Remote Sensing, seems to have
become a real challenge for the near future. New instruments and new sensors will provide us
with a large variety of new views of the "real world." This huge amount of data has to be

combined and integrated in a (computer-)model of this world. But also, the knowledge of how
these data are gathered and what their characteristic properties are is among the useful sources of
information that contribute to a meaningful interpretation. Multiple sources may give us
complementary views of the world -- consistent observations from different (and independent)
data sources support each other and increase their credibility, while contradictions that may be
caused by noise, errors during processing, or misinterpretations, can be identified as such. As a
consequence, data integration can produce results that are very reliable, and represents a valid
source of information for any geographical information system (GIS).

The workshop structure consisted of three sessions of three to five individual presentations. All
papers were discussed both individually and in the general context of the session. Additionally,
all papers were considered under four specific aspects:

1. What are the characteristic properties of the data sources that are explored in the individual
approach?

2. In which category does the used integration method fall?
3. What is the result of the integration and what are the improvements realized?
4. What are the major advantages of the proposed methods?

Four participants generously volunteered to consider the papers under one of the above aspects.
Started as an experiment to encourage lively discussion, the four summaries (three of which are
included herein) prove the success of this approach, and give also a useful index to the presented
papers. It was an interesting experience for the authors to get a feedback on their own
presentations.

Last but not least, I would especially like to thank Dr. James C. Tilton of NASA Goddard Space
Flight Center for the excellent organization of this workshop. I would like to further
acknowledge the sponsors of the workshop, the IAPR, NASA Goddard Space Flight Center, and
the Washington/Northern Virginia Chapter of the IEEE Geoscience and Remote Sensing
Society. My thanks go also to the authors that have contributed papers and to all the active
participants that made the workshop more than just a sequence of presentations. I hope that
activities of IAPR-TC7 will continue in the future under the leadership of the new chairman of
TC7, Dr. Tilton, and that we can reassemble for another interesting workshop -- probably in 2
years -- on the occasion of the next ICPR, which will be held in The Hague, The Netherlands.

Dr. Walter G. Kropatsch
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ABSTRACT

There are a variety of ways for determining ground reference data for satellite remote

sensing data. One of the ways is to photo-interpret low altitude aerial photographs and
then digitize the cover types on a digitizing tablet. These digitized cover types are then
registered to 7.5 minute U.S.G.S. maps that have themselves been digitized. The
resulting ground reference data can then be registered to the satellite image, or,
alternatively, the satellite image can be registered to the ground reference data.
Unfortunately, there are many opportunities for error when using a digitizing tablet and
the resolution of the edges for the ground reference data depends on the spacing of the
points selected on the digitizing tablet. One of the consequences of this is that when
overlaid on the image, errors and missed detail in the ground reference data become

evident. This paper discusses an approach for correcting these errors and adding detail to
the ground reference data through the use of a highly interactive, visually oriented

process. This process involves the use of overlaid visual displays of the satellite image
data, the ground reference data, and a segmentation of the satellite image data.

Several prototype programs have been implemented on the VAX computer system and
the IVAS image display system to examine various methodologies for improving ground

reference data. These programs provide a means of taking a segmented image and using
the edges from the reference data to mask out those segment edges that are beyond a
certain distance from the reference data edges. Then using the reference data edges as a
guide, those segment edges that remain that are judged not to be image versions of the
reference edges are manually marked and removed. We describe the prototype programs
that were developed and the algorithmic refinements that facilitate execution of this task.
Finally, we point out areas for future research.

INTRODUCTION

There are many ways to use multiple data sources in remote sensing. In this paper, we
discuss a method for using image data to improve ground reference data sets. Reference
data sets are sometimes referred to as "ground truth"; however, since the methods of
creating reference data sets provide many opportunities for error, we will use the term

reference data set. This terminology allows for the possibility of using multiple data
sources for determining not only the contents of the reference data set but also for
refining it.

This work was supported by the Office of Aeronautics, Exploration and Technology,
NASA Headquarters, Washington, DC.



We have obtained satellite image data from a number of investigators along with
reference data sets that they created. By using the image data to create a segmented
image, edges consistent with the spectral variation in the image are created. Visual
inspection of the reference data edge map overlaid on the raw image or the segmented
image reveals many discrepancies. These may be errors, or simply inappropriate
attention to detail by the person generating the reference data (particularly if they were
digitizing data from a digitizing tablet). An example exhibiting displacement errors and
too coarse of a digitization scale is given in Figure 1.

While it would be desirable to have an automatic method of using the segmented image
data to revise the reference data set, we chose, as a first approximation, to develop
prototype methods that allow interactive selection and deletion of the segmented image
edges that appeared to be too far from those edges generated from the reference data set.
The end result is to leave a set of edges that are considered to be the true edges derived
from the segmented image data, based on their proximity to the original reference data
set edges.

METHODS

A series of programs were developed using IDL (Interactive Data Language) that
allowed the user to use either an IIS system 575 terminal or an IIS IVAS terminal
attached to a VAX cluster for interactive editing of the edge map generated by an image
segmentation algorithm (Tilton, 1989) which runs on the MPP (Massively Parallel
Processor) at Goddard Space Flight Center.

The image segmentation algorithm is an iterative process. At each iteration, those
regions that are most similar by a particular criteria (e. g., minimum change in image
entropy, or minimum rise in image mean squared error) are merged. As the number of
iterations increase, the number of image segments decreases. A program called
"edge.movie" that runs on the IIS System 575 was developed that allows the user to view
various iteration steps and compare these with the original reference data set edges and
bands from the image data.

This program allows the user to interactively pick an iteration and then immediately
compare it with these other sources of information. It is best to select an iteration with
more segments and edges than necessary to fit the reference data so that a crucial
segment edge that may match a particular reference edge will not be lost. On the other
hand, choosing too low an iteration and thus an image with too many segments and edges
increases the work load of the analyst significantly.

The next step is extract the edges of the selected iteration from the combined edge file
which contains the edges from all iterations coded by iteration number. This leaves an
image of all of the edges present at iteration n with the pixel value of the edge indicative
of its age.

The original reference data is a raster format image divided into regions. An IDL
function, GREFEDGE.PRO was written to extract the edges from this image.

This segmented edge file is then masked with the edge file from the reference data to
eliminate all edges that are beyond a specified distance from the reference set edges.
This distance is selected by the analyst and depends on the image set being analyzed.
Figure 2 shows an example of this process after this masking is complete.
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Becausethe main algorithm for this procedurecanonly processimagesthat are 128x
128,sectionsof this sizeor smallermustbeextractedfrom larger imagesfor processing
andthenbe recombinedto producea final product. In orderfor there to becontinuity
betweensectionsit is necessaryto haveacertainamountof overlapbetweenthem. The
degreeof overlaprequiredis beinginvestigatedin ongoingstudies.

Two programs,CHGVAL5.pro and CHGVAL4.pro (for the IIS System575 and IIS
IVAS respectively)werewritten in IDL to providea prototypeinteractiveenvironment
(listings in AppendixA). Theinput files (image,segmentedge,original referenceedge)
for eitherof theseprogramscaneitherbe input oneat a time astheprogramrequestsor
the input file namescanbereadfrom aninput file.

The CHGVAL5.pro programfor the IIS System575 imagedisplaysystemusesa track
ball to movethecursoron theimagedisplayandthetrack ball function buttonsto either
deleteanedgepixel, replaceandedgepixel or goon to thenextstepin theprogram.

The CHGVAL4.pro programfor the IIS IVAS systemfunctions the sameway except
that it allows thedisplayto bezoomedandroamedwhenlooking for edgesto delete. In
addition,the IIS IVAS systemusesa threebuttonmouseinsteadof a multi-buttontrack
ball.

The CHGVAL#.pro programsstart by askingwhetherthe analystwishesto enter the
namesof the imagefiles individually or whetheran input file containingall of theother
input itemsis to beused. Sincetheprogramis usuallyinvokedmanytimesto complete
theprocessingof asinglesection,theuseof the input file savestheanalystthetroubleof
rememberingandtyping in all of theotherfile nameseachtimetheprogramis usedona
section.

The edgesfrom the original referenceimageare loadedinto the graphicsplaneof the
displaydevice. Two bandsof theoriginal imagedataareloadedinto theredand green
displaymemoriesandtheedgesfrom themaskedsegmentededgeimageareloadedinto
thebluedisplaymemory.

In the CHGVAL5.proprogramfor theIIS system575,the analystusesthe track ball to
movethecursoroverpansof theblueedgeimagethattheywish to removeandclick on
the appropriatetrack ball button, producing "nicks" in the selectededge. For the
CHGVAI.,4.proprogramfor theIIS IVAS system,theusercanzoomandroamtheimage
with themousefirst so it is easierto seewhatandwhereoneis deletingedgesegments.
Theterminalmonitorpromptstheuserwith thecurrentfunctionsof thetrackball buttons
or themousebuttons. An exampleof this processafter nickingseveraledgesis givenin
Figure3.

After havingnickeda numberof edgesfor removal,the analystcanexit this part of the
programand the nicked edgeimageis written out to a file for processingby a batch
program that runs on the MPP. After writing out the nicked edge image, the
CHGVAL#.proprogramsubmitsthebatchprogramto theMPPandwaits for it to finish.
The MPP programwrites out the new edgeimage with the nicked edgescompletely
removed. The CHGVAL#.proprogramthenreadsin the new edgeimageand writes it
out to thereddisplaymemorysotheanalystcanreviewtheresultsof hiswork.

When thenew edgeimageis readinto the redmemorybank,thosepartsof theoriginal
edgeimagethatweredeletedshowupasblueandthosepartsthat werenot deletedshow
upasmagenta(red "newedgeimage"+ blue"blueold edgeimage"). Theanalystis then
given thechoiceof undoingsomeof hisdeletionsor continuingwith furthernicking or
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quitting andsavingtheresult. An exampleof thefinal resultfrom CHGVAL#.PROfor a
single128x 128sectionof datais givenin Figure4.

There are two types of edge connectivity that can be used, 8 connected and 4 connected.
With 8 connected edges, unexpected deletions can chain through edge intersections.
Thus it is particularly useful to have a number of ways of back tracking.

Our prototype system provides several alternative ways to recover edges. The simplest
method is that while nicking lines, the user can undo a nick by placing the cursor over
the nicked pixels and pushing the appropriate key on the mouse or the track ball.
Alternately, the user can run a test, deleting the nicked edges and determine whether he
wants to undo some of the nicks. If the user chooses to undo some of the nicks he can
either fill in particular nicks using the cursor control device or he can pop deleted pixels
off of the stack into their former locations. The latter method is most effective if the

most questionable deletes are saved until near the end of a nicking cycle.

These methods of recovering erroneously deleted edges only work within a single nick

and try cycle. If one either continues with a new nick and try cycle or saves the last
result and exits the CHGVAL#.PRO program, then another method must be used to

recover lost edges. In order to repair or recover edges after leaving the CHGVAL#.PRO

a program that would allow pasting edge pixels from an earlier edge image into the
current edge image was developed. This program puts one band of the image into the
green display memory, the edge image to be fixed into the blue display memory and the
master or original edge image into the red display memory. The user then uses the
cursor control device to put the cursor over the master edges that he wishes to copy to the

edge image to be fixed and presses the appropriate button. This puts a copy of the master
pixel overlayed by the cursor into the edge image to be fixed. In this manner each pixel
of an edge segment in the master image can be copied into the edge image to be fixed.
An appropriate change in color takes place for each pixel that is moved into the edge
image that is being repaired so the user can tell which pixels are present in both images.

The above description is summarized in Figures 5 and 6. Figure 5 illustrates the overall
data flow from the original image and ground reference data to the revised reference

edges (producing a revised ground reference data file). Figure 6 is a flow chart
describing the CHGVAL_.PRO programs.

After several overlapping 128x128 edge images have been edited, it is necessary to

rejoin them into a single image, to delete nonterminating edges in the overlap region and
to join edges from overlapping segments. Another IDL procedure, COMBCHG4.PRO
that runs on the IIS IVAS display is being developed to accomplish this task. Since its
functions are so similar to those of CHGVAL4.PRO it is being designed to perform these
functions also.

Two test images are being used. The first is a 468 x 368 pixel Thematic Mapper (TM)
image of the Ridgely Quadrangle on the eastern shore of Maryland. It contains few
classes and most of them are large in area. The main features of the scene are fields and
wooded streams. There are small areas of water, ponds, and single urban area. These

areas were digitized from a 7.5 United States Geological Survey quadrangle map that had
had its reference data boundaries drawn on a plastic overlay from 1977 aerial

photographs using a digitizing tablet (Gervin, et al., 1985). In the original study, the
ability of AVHRR and MSS data to distinguish Level 1 land cover classes was examined.
This involved registering the MSS data to the Ridgely Quadrangle and resampling it to
60 meter pixels. This lead to the ground reference data being rasterized to 60 meter
pixels. Since the pixel size of the original reference data set was 60 meters and TM data
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is 30meters,thedisparitybetweentheTM boundariesandthereferencedataboundaries,
andlackof detail in thereferencedataareunderstandable.Examplesshownin Figures1
through4 arefrom a 128x 128sectionin theupperleft comerof this dataset.

The secondimageis aportion of theWashingtonD.C. metropolitanarea. This areawas
brokendowninto moreclassesthantheRidgelyquadrangleandtheclassesaresmallerin
size. Testswith thisdatasetwerenotyet completedasof thiswriting.

RESULTS& DISCUSSION

In practice, the prototypesworked well, allowing the edge maps to be trimmed by
nicking thoseedgesto bedeleted.Problemswereprimarily onesof speedin loadingthe
original referencedatainto thegraphicsplane.

Theuseof 8 connectededgesleadto unexpectedchainsof deletions. Becausethis was
sosevere,theprocessingprocedureswerestartedoverusing4 connectededges.

Joining the segmentswith overlappingboundarieswasnot a seriousproblemwith the
Ridgelyquadrangle.Thelargeareasandconcomitantsmallnumberof edgescontributed
to theeachin joining thesegmentstogether.

Looking againat Figure4, note that refined groundreferenceboundaries(obtainedby
selecting boundaries from the image segmentation)follow very closely visible
boundariesin the imagedata. In particular,notethevery coarse,misregisteredboundary
from theoriginal groundreferencefile thetop middleof the image. Therefined ground
reference boundary is perfectly registered,and follows the actual variations in the
boundaryvery closely.

We plan to use this and otherdata setsin comparativestudiesof various algorithms
designedto extractspatialinformationfrom imagery. We expectthat therefinedground
referencedata will help to more accuratelyevaluatethe behaviorof thesealgorithms
thanwould theoftentoocoarseandmisregisteredoriginalgroundreferencedata.

REFERENCES
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Level I Land Cover Classification Accuracy for MSS and AVHRR Data," International
Journal of Remote Sensing, 6(1), pp. 47-57
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Vancouver, BC, Canada, July 10-14, 1989, pp. 2420-2423.
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Figure 1. Edges from a ground reference file
(black) overlaid upon the corresponding
Landsat Thematic Mapper (TM) image. Note
the displacement errors and coarse digitization
scale compared to the Landsat data.

Figure 2. Edges from a ground reference file
(white) and edges from an image segmentation
(gray) overlaid upon the corresponding Landsat
TM image. Image segmentation edges further
than 6 pixels from a ground reference edge have
been masked out.

Figure 3. Edges from a ground reference file
(white) and edges from an image segmentation
(gray) overlaid upon the corresponding Landsat
TM image. Image segmentation edges that are
shown to be "nicked" in this image will be
deleted by the next processing step (connected

components labeling).

Figure 4. Edges from a ground reference file
(white) and the final selection of corresponding

edges from an image segmentation (gray)
overlaid upon the Landsat TM image. This
final selection of edges can now be used to

generate a label map that can be used as a
substitute for the original ground reference file.
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Abstract

Measured changes in vegetation indicate the dynamics of ecological processes and can

identify the impacts from disturbance. Traditional methods of vegetation analysis tend to be

slow because they are labor intensive; as a result, these methods are often confined to small local

area measurements. Scientists need new algorithms and instruments that will allow them to

efficiently study environmental dynamics across a range of different spatial scales. Presented is a

new methodology that address this problem. This methodology includes the acquisition, process-

ing and presentation of near ground level (NGL) image data and its corresponding spatial

characteristics. The systematic approach taken encompasses a feature extraction process, a

supervised and unsupervised classification process, and a region labeling process yielding spatial
information.

1. Introduction

1.1. Motivation

During the 1990's NASA will establish a new remote sensing system, the Earth Observa-

tion System (EOS), with a variety of sensors and resolutions. Interpretation of the data at

different resolutions will require ground level validation and correlation studies that quantify the

heterogeneity of the environment over the range of spatial scales. Both transect sampling (NGL

sensing) and remote sensing (satellite sensing) provide data that can identify changes in

landscape[l]. Changes in species populations represent shifts in community organization that

typically show temporal and spatial variation. Changes in organization among species can occur

randomly or in response to governing biotic and abiotic factors[2]. These types of changes can

not be detected accurately at the satellite sensing level, and currently the NGL methods used to

determine change are typically labor intensive and slow. Thus, there exists a need to develop a

new methodology to analyze the NGL sensed data.

This new methodology, also should provide the scientist with information that correlates

satellite imagery with NGL imagery. For example, the spectral signature for a pixel in a satellite

image provides a single, integrated measure of the ecological patterns within the ground surface

area represented by the pixel. The same pixel value may be the result of diverse ground condi-

tions. Without finer resolution imagery it is impossible to determine whether this signature

This work was supported in part by National Science Foundation Grant DIR89-13670.
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corresponds to a uniform cover of vegetation or various combinations of vegetation patterns.

For the ecological community to make full use of remotely sensed data, it is critical to provide a

way to relate the integrated reflectance values to the variety of vegetation patterns that occur at
different scales.

1.2. Summary of the NGL Methodology

The NGL sensing system provides absolute and relative measurements of ground level

vegetation. The NGL measurement process starts with the acquisition of 35mm color slide

images of field plots. The field plot images, ranging in resolution from lmm to lcm, and varying
in size from 0.5 m z to 10 m 2, are obtained using a camera gimbal mounted on a boom. Each

rectangular plot is comer marked for later spatial registration. The NGL image is digitized with

a high resolution, 4000 by 6000 pixels, slide scanner, and then image analysis is performed using
a workstation based software system called Khoros (see Appendix).

The NGL images are comprised of only three spectral bands in the visual region of the

spectrum: red, green and blue (RGB). Since the NGL images do not contain spectral information

in the infrared region, the image processing analysis that allows differentiation between plant

species and the differentiation of above ground biomass and bare ground is more difficult.

TRAINING PRODUCTION

Figure 1. Block diagram of NGL methodology.

The NGL image analysis employs four related components: preprocessing, feature extrac-

tion, classification, and region analysis, see Figure 1. Preprocessing can involve warping the

image to achieve spatial registration, median filtering to reduce noise, and image cropping.

Once image preprocessing is complete, pixel features can be extracted. Pixel features include

spectral information, local statistical measures, and various texture measures such as Hurst frac-
tal dimension or the Laws' texture metrics. Representation of the RGB triples in other color

spaces often allows for a better segmentation. Local statistical operations that can be computed

using Khoros include: mean, variance, contrast, second angular moment, zero order entropy,

and dispersion. Spatial feature extraction can be performed on one, all, or a ratio of the prepro-
cessed RGB data bands.
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Theoriginal spectralbands(RGB) andthefeaturebandsof dataare thencombinedto pro-
duce a multiband image. The conceptof a multibandimage is analogousto a multispectral
image;eachpixel in the imagenow containsmanyelementsor attributes(spectralreflectance
andfeatures).Sinceapixel containsmanyelementsit canbe thoughtof asa vector,whereeach
elementin thevectorrepresentsa differentattributeassociatedwith thepixel. This dataorgani-
zationlendsitself to generalclassificationmethods.

The overall classificationprocessfirst involvesa one-timetrainingphasethat producesa
mappingthat is then usedin the productionphase. The training phaseis a two part process,
unsupervised classification followed by supervised classification. The unsupervised
classificationportion of the trainingphaseis usedto, (1) reducethecomplexity andthedimen-
sionality of the multiband image, and (2) determinethe inherent structureof the databased
solelyon reflectanceandtexturemeasurements,which areunconstrainedby externalknowledge
of the data.The supervisedclassificationstepallows ananalystto map the clusters determined

by the unsupervised classifier to specific desired classes. The motivation for using the unsuper-

vised classifier first is to reduce the complexity associated with the supervised classification. It

has been found that combining the two types of classifiers in this manner produces relatively

accurate decision boundaries, and therefore near minimal classification error[3][4].

After a single pass of the training process, object features are obtained that can be added to

the original multiband image. This multiband image is used as a new input to the training pro-

cess, see Figure 1. Object features such as geometric moments, fractal dimension and morphol-

ogy supplement the pixel features used in the previous pass to produce a more accurate

classification. The final result of the training phase will produce data vectors that represent the
different cluster means and variances.

The second phase of the classification process uses the results, cluster means and variances,

obtained in the training phase to classify other images that fit in the same representative set used

in the training phase. Algorithms as simple as a minimum distance classifier, or as robust as the

approximated likelihood ratio detector axe available in Khoros. The classification process is fol-

lowed by spatial analysis. Percent coverage of above ground biomass and individual plants is

calculated. This information is the basis for the time series analysis that then can be correlated

with changes seen at the remote sensing level.

This methodology has been applied to the analysis of images for the Sevilleta Long Term

Ecological Research, LTER, project. The National Science Foundation LTER program supports

research on long-term ecological phenomena at a national network of sites. One major goal of

the LTER project is to study long-term trends in natural ecosystems that have not previously

been systematically monitored. The NGL methodology is capable of analyzing image data

acquired from large transect plots and small fertilizer plots. A time series analysis of this data

can be accurately tracked and eventually correlated with changes seen at the global level. This

methodology provides a link that will allow ecological phenomena that occur on large time

scales to be investigated.

2. Theory of the NGL Classification System

2.1. Image Preprocessing

Image preprocessing for the NGL images acquired at the Sevilleta LTER site only require

geometric correction and image cropping. Median filtering was originally used to reduce noise

artifacts, but the final spatial measurements exhibit distortion caused by the smoothing effects of
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thefilter.
Sincethe NGL dataarecapturedusinga 35mmcameragimbal mountedon a boom,the

imagewill bedistortedbecauseof camerapositionandterraintopology. The cornermarkersin
the imageprovidetie pointsthatwill allow theimageto bewarpedback to thecorrectgeometry.
Sincethe acquisitionsystemuses35mmslides,thexy pixel ratio in the imageis2/3, andmustbe
correctedback to a 1/1pixel ratio whenthe slidesaredigitized.The Khoros interactive image
editor allowsa user to selectthe imagecorner pointsandrecord thexy locationsassourcetie
points. The usermustthen specifythe distancebetweenthe tie points. From this information
thedestinationtie pointsmaybecomputed.Thefollowing table andequationsdescribethedes-
tination tie pointcomputations

L
O_ = 1 (1)

(x.2 +y-2) 2

Where" x'= k(xpl-Xp2) y'= k(ypl-yp2)

P 1 is some tie point

P 2 is some other tie point

k is a pixel aspect ratio constant

L is the actual distance between p 1 and p 2 in meters

o_ is the new coordinate position translation factor

Source tie points

(xI,Yl)

(x2,Y2)

(x3,Y3)

(x4,Y4)

Destination tie points

(O,O)+(X 1,Y1)

(1,0)+ (x 1,Y 1)
Oc

(1,1)+(Xl,y 1)

(0,1)+(x 1,y 1)

The next step in the registration process is to use the four source and destination tie point

pairs to compute the coefficients for two first-order equations that will be used to perform the

image registration. In some cases, a wide angle lens causes severe image distortion. This

requires the use of more than four tie points, resulting in a higher order warping polynomial.

The original image is warped using the computed polynomial equation and bilinear interpola-

tion, and then cropped using the destination tie points.

2.2. Feature Extraction

Texture measures are typically computed on a single band image, necessitating the reduc-

tion of the RGB image to a single band image. This reduction is performed using a color quan-

tizer that reduces the image from 16.7 million colors (3 bands) to 256 colors (1 band). Alterna-

tively, the RGB image can be converted to the HSV (Hue, Saturation, and Value) color space

with the spatial measures computed on the value band.
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Simplestatisticalparametersbasedon local areameasurementsover a small movingwin-
dow arecommonlyusedto provide textureinformation[5].The statisticalparameters,meanand
variance,arebasedon thecentralmomentsandareusedto provideanindicationof how uniform
or regulararegion is. Contrastprovidesa measureof the dissimilarityof the intensityvaluesin
the image,and angular secondmomentyields a measureof uniformity or homogeneityof the
gray level values. An indication of the texturenonuniformity is provided by a measureof the
entropy. Texturemeasuresbasedon thesestatisticalparametersdid not yield any new informa-
tion that aidedin the classificationprocess.For this reason,featuresbasedon simplestatistical
parameterswerenotused.

Althoughnumeroustexturemeasureshavebeenproposedto characterizethe spatialtexture
featuresin an image,goodresultshavebeenobtainedusinga setof spatialconvolution masks
proposedby K. I. Laws[6]. TheLaws' texturemasksarecomprisedof asetof 5 by 5 masksthat
areconvolvedover theentire image[7]. Themasksare intendedto be sensitiveto visual struc-
turessuchasedges,ripples,andspots.

Eachof theLaws' texturemasksarederivedfrom a setof five basicvectors. Therearea
total of 25possiblemasks,eachformedby multiplying two of the five vectors together.They
aredesignedto act asmatchedfilters for certain typesof quasiperiodicvariationscommonly
found in texturedregions.

Varioustexturemaskswere tried in order to achievegooddiscriminatingpower between
adjacentregionsin the image. Thesetof texturemasksthatprovidedthebestresultsincludethe
L5E5 andE5L5 masks.The L5E5 andE5L5 masksareconstructedby multiplying the L5 and
E5vectors,yieldingthefollowing texturemasks:

Ii 64il [12°2ill- -8 -12 -8 - -4 -8 0 8
L5E5= 0 0 0 E5L5= -6 -12 0 12

8 12 8 4 -8 0 8
4 64 -- -202

The L5E5 mask tends to detect edges arising from horizontal changes in texture, while the E5L5

mask detects texture changes in the vertical direction.

Once the spatial texture features are extracted by convolving each mask with the gray level

image, an additional feature selection step is used to reduce the dimensionality of the

classification process. This involves a 50% blending of the two texture bands into one texture

band that contains the information extracted by each of the texture masks. By using one texture

band, the overall weighting of the texture features relative to the spectral image information is

reduced. This provides a more representative weighting of the original spectral information

relative to the spatial texture information in the classification process.

2.3. Classification

As was mentioned above, the classification process is a two phase process. The first phase

is considered the training phase, while the second phase implements the actual classifier and is

referred to as the production phase. The training phase is further broken into two parts, unsuper-

vised classification and supervised classification. The unsupervised training determines the

inherent structure of the data, unconstrained by external knowledge about the vegetation pat-

terns, while the supervised training imposes the analyst's knowledge of the vegetation patterns to

constrain the results. The final objective of the classification process is to reduce a large data set
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(themultibandimage)into afew classesin asinglebandimage.

2.3.1. Training Phase

The goal of the training phaseis to producean ensembleof data that characterizesa
representativeset of NGL images,so that other imageswith similar characteristicscan be
automatically classified (the production phase). In the unsupervised classification portion of the

training phase the algorithm maps areas on the ground that have similar texture and spectral
reflectance characteristics to the same cluster. The resulting clusters assigned to the image pix-

els therefore represent different classes that may or may not correspond to the classes of ground

objects that we are ultimately interested in mapping. A good example of such a situation is the

mapping of shadow areas and wet or dark soil areas. The analyst may want to ultimately con-
sider both of these classes as bare ground, but each may represent a separate cluster as produced

by the unsupervised classifier. The output of the unsupervised classifier is a single band pseudo
colored image that represents a map of the clustered pixel vectors, the cluster centers (means),

and variances. The mean and variance data represent the ensemble of data that characterizes a

specific set of NGL images.

Image data that represents specific areas to be classified are submitted to the unsupervised

classifier. The unsupervised classifier is implemented as a clustering algorithm that will deter-

mine the natural groupings of clusters of the data in K-dimensional feature space. The cluster

centers represent an estimate of the probability density function. The cluster centers are then

assigned to classes during the supervised classification. The determination of clusters is accom-

plished by the K-means clustering algorithm[8].

The K-means algorithm is a partitional algorithm that attempts to minimize the sum of

squared errors in its cluster assignments. The similarity measure used is the Euclidean distance.

The K-means algorithm partitions the data space by using a search method where patterns are

moved from one cluster to another until all patterns belong to a cluster. Each cluster is identified

by a single cluster center (mean) and cluster variance. Since the K-means algorithm uses the

Euclidean distance as a similarity measure, it is vital that the features previously determined are

weighted so as not to bias the results produced by K-means. The performance of K-means is

improved if the feature pixel vectors are orthogonal. In practice, however, this is rarely the case.

Therefore, it is best to over-cluster the pixel vectors resulting in a less refined classification.

Experiments show that the number of clusters produced by K-means should be about four

to seven times the final number of classes desired. The cluster centers provide the location in

K-dimensional space for each cluster, while the variance describes the size and orientation of

each cluster. This information is used in the supervised classification described below.

The output of the unsupervised classifier provides a mapping of pixels in the original image

to different clusters. The clusters produced by the unsupervised classifier are usually not the

desired classes; the object of the supervised classifier is to map each cluster to a desired class.

The supervised classification process is performed manually using the Khoros image editor. The

Khoros image editor allows the analyst to display both the clustered image and the original

image. Cluster numbers in the clustered image can then be assigned to specific desired classes.

The resulting mapping of clusters to specific desired classes will be used in the production phase

of the classification process.

Often the data in a cluster may need dividing because it is spread over multiple desired

classes. The P(m,L) fractal algorithm can be used to help determine the splitting of the clusters.
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The P(m,L) distribution is obtained from the unsupervised classification image data. Fre-

quency distributions for each class m, are determined for a series of different window sizes, L.

The resulting probability distribution should provide valuable information describing the aggre-
gation of classified pixels in the NGL image.

The P(m,L) probability density function has moments that vary with the measurement

scale. This scale dependent characteristic of the moments provides a framework for transform-

ing plant coverage estimates from one scale to another. It has been found that natural landscapes

often exhibit consistent changes in the fractal dimensions over a range of moments[9]. This pro-

vides a way of measuring the degree of relationship from one scale to another.

Once the moment bands have been determined, they will be appended to the multiband

image containing the spectral and texture bands. This image will then be reprocessed by the
training phase. The result of this iterative processing will produce statistics (cluster means and

variances) that better describe the desired classes.

2.3.2. Production Phase

The object of the this phase is to take the mapping obtained in the training phase and allow

unsupervised classification of subsequent images that are considered to be in the same represen-

tative data set as used during training. It is required that the same feature extraction process is

performed on the new images as was performed on the training set. The unsupervised classifier

used in this phase is the approximated likelihood ratio detector (ALRD). The ALRD uses the

cluster centers, cluster variances, and cluster to class mapping to classify new images. This

robust unsupervised algorithm is not limited to detecting whether a pixel vector belongs to a sin-

gle class. A pixel vector can be assigned to multiple classes and through a thresholding test

determine to which class the pixel best belongs. If a pixel vector does not have a high enough
probability to belong to any class, then it is considered an outlier, and thus unclassifiable. This

algorithm uses the ratio of the distance of a pixel vector to a cluster center to each diagonal ele-

ment of the covariance matrix (variance elements), to determine to which class a pixel belongs.

In other words, the algorithm computes the probability density function of all clusters that

belong to a class and then determines if a data point has a high enough probability to belong to

that class. The diagonal of the covariance matrix is computed by Equation (1) while Equations
(2) and (3) perform the likelihood ratio test.

Ni

_1 X 2
I___1( Oil -m Oi)

1--_L1_=1(X li l_m li)2

diag (Ci) =

1 Ni

N; __a (Xnil-mni) 2
tl=l

/ (2)

where Ni is the number of points in the ith class, m i is the cluster mean, I is an index into the list

of data points belonging to ith cluster, and n is the dimensionality of the vector.

D I]Xji_mill2
ei = _ 2 (3)

j =0 K(Iji
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Pi is the likelihood ratio of the ith class, D is the dimension of the unclassified data vector X, and

K is a tuning parameter.

no class if Pi > 1

classg = _class i if Pi < 1 minimum (Pi) (4)

The diagonal of the covariance matrix and the cluster means are computed during the training

process. The similarity measure used by the ALRD is the same as that used in the K-means algo-

rithm, the Euclidean distance. The tuning factor adjusts the likelihood ratio, which either

increases or decreases the number of outliers detected.

The ALRD is used rather than the minimum distance classifier because it allows for outlier

or unclassifiable pixels. This reduces the size of the training set because it eliminates the need to

classify every possible pixel vector. The ALRD also uses both the size and orientation of the

classes in K-dimensional feature space to aid in classifying new pixels.

2.4. Region Analysis

The final step in the NGL image analysis is the calculation of class and region moments

[10]. For example, in the case of a two class image (above ground biomass and bare ground), the

area calculations result in percent vegetation cover. More detailed information can be obtained

by labeling the individual objects in the two class image and then calculating moments.

Labeling of individual objects is based on the splitting and merging of regions, where the

decision metric is the gradient between eight-connected neighbors. The labeling algorithm uses

either the difference between the gray levels of adjacent pixels or the Euclidean distance

between adjacent pixel vectors as the gradient value. If the gradient value is less than a threshold

the regions are merged. The moment calculations (standard, central, and invariant) on the result-

ing labeled regions give detailed spatial information on each object. This information provides

the analyst with the necessary information to track individual plant changes over time.

The region analysis algorithm generates two images; (1) an axis image that contains a cross

for each region with the cross centroid located at the center of the object, and (2) a region out-

line image or contour image. Overlaying the outline image upon the original RGB image or the

axis image, provides the analyst with a means of visual interpretation and verification. This

assists in the time series analysis since it allows the analyst to visually track the vegetation

changes.

3. Discussion of a Specific Example

The NGL methodology has been applied to helping ecologists at the Sevilleta LTER site

track the vegetation change in both transect and fertilizer plots. The transect plot dimensions are

usually 10m by 5m, and fertilizer plots are usually lm by 0.5m. The following example will

illustrate the results obtained by using the NGL methodology on transect images. A representa-

tive image of a transect area in the field is used as the training pattern, then another image is
classified based on the results from the training. In this example, vegetation is segmented from

all other matter, thus a two class problem.

This example begins with a representative transect plot image, Figure 2, that has been spa-

tially registered and cropped.
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Figure 2. Representative transect plot image.

The next step in the process is to compute pixel features. Pixel features are computed using

the Laws' texture metrics. Since these metrics only work an a single band image, the original

RGB image must be compressed down to a single band. This is performed using the color quan-

tizer method. Two different Laws' texture kernels, E5L5 and its transpose L5E5, are convolved

with the one band image producing two single band images that are blended together producing

another single band image, shown in Figure 3.

The texture band is then appended to the end of the original RGB image. This new multi-

band image is used in the classification training process. The K-means algorithm, produces a

single band cluster number image shown in Figure 4.

Figure 5 illustrates a plot of the distribution of the cluster centers. Each row of impulses

represent a different set of cluster center values. This plot gives a visual interpretation of the
correlation between different cluster centers.

The next step is the supervised classification phase of the training. Cluster numbers are

assigned to specific classes using the Khoros interactive image editor. The result of the super-

vised classification is shown in Figure 6.

At this point the training can stop if all the clusters have been mapped to the desired

classes. Otherwise, object features are computed and the system is retrained. In this example all

clusters have been mapped to the two desired classes. This ends the training phase.
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Figure3. Laws' textureband.

Figure4. Clusternumberimage.
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Clus fer Center Values

Figure 5. Plot of cluster centers.

Figure 6. Resulting class image after training phase.
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With the results produced by the training phase, other images from the same representative

set can be classified using the approximated likelihood ratio detector. The new image to classify

is shown in Figme 7.

Figure 7. Transect image to be classified.

The same image preprocessing and feature extraction is performed on this image as on the

training image, resulting in a multiband image. The result of the unsupervised classification is

shown in Figure 8.

The final step is to perform region and class analysis to determine the desired spatial infor-

mation. Figure 9 illustrates the result of the analysis procedure. This image shows the size of the

regions by outlining them and the orientation by the crosses in each outlined region. In this

example the percent coverage of vegetation is 38.43%.

This example illustrates the applicability of the NGL methodology for the Sevilleta LTER

project. The system is planned for production use by the end of the year. The ecologists see this

approach as critical to the successful and timely analysis of the thousands of transect and fertil-

izer plot images required by the project.
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Figure 8. Resulting image after classification.

Figure 9. Region outline image.
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4. Conclusion

This paper presents a new methodology for ground level vegetation analysis. It emphasizes

an integrated approach using existing algorithms and introduces a new classifier, the approxi-

mated likelihood ratio detector. Some of the techniques used in the analysis of the NGL imagery

include preprocessing, feature extraction, classification, and region analysis. The goal is to

allow the scientist to correlate information obtained at the satellite sensing level with more

detailed information contained in the NGL imagery. Existing techniques based on satellite

imagery do not provide enough detailed information for a complete vegetation analysis. The

approach presented here provides a means of accurately tracking and quantifying the vegetation

changes across a range of different scales. Future development of this system includes the

integration of spatial results of NGL images into GIS.
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Appendix

The Khoros system integrates multiple user interface modes, code generators, instructional

aids, data visualization, and information processing to produce a comprehensive image process-

ing research tool. This system can easily be tailored to other application domains because the

tools of the system can modify themselves as well as the system. This attribute is important in a

system that is designed to be extensible and portable.

The Khoros infrastructure consists of three major components: a high level user interface

specification, methods of software development embedded in a code generation tool set, and an

interoperable data exchange format and algorithm library. These basic facilities have been used

to build a set of applications for performing image processing research, algorithm development,

and data visualization. One of the most powerful features of the system is its high-level, abstract

visual language.

Khoros is a successful demonstration of how development programming, end-user applica-

tions programming, information processing, data display, instruction, documentation, and

maintenance can be integrated to build a state-of-the-art image/data processing and visualization
software environment.
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Abstract

General principles for integrating data from different sources axe derived from the experi-

ence of registration of SAR images with DEM data. The integration in our case consists of

establishing geometrical relations between the data sets that allow to accumulate information

from both data sets for any given object point (e.g. elevation, slope, backscatter of ground
cover, etc.).

Since the geometries of the two data axe completely different they cannot be compared on a

pixel by pixel basis. The presented approach detects instances of higher level features in both

data sets independently and performs the matching at the high level. Besides the efficiency of

this general strategy it further allows the integration of additional knowledge sources: world

knowledge and sensor charateristics are also useful sources of information.

The SAR features layover and shadow can be detected easily in SAR images. Art analytical

method to find such regions also in a DEM needs in addition the parameters of the flight path

of the SAR sensor and the range projection model. The generation of the SAR layover and

shadow maps is summarized and new extensions to this method axe proposed.
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1 Introduction

Synthetic Apertur Radar (SAR) images differ strongly from conventional optical images by their

image formation principle. Since SAR is an active sensor, image acquisition does not depend on

local wheather conditions, which is a major advantage over all optical sensors especially in areas of

the world that are often covered by clouds. Hence, many of the planned remote sensing systems

include a SAR sensor. On the other side, SAR images are still very noisy data and are difficult to

interpret by a photo-interpreter.
One of the reasons are the complex geometric distortions that are introduced by mapping the

earth with a range projection. There exist several possibilities to remove these systematic distortions

and to transform the SAR image into a map projection which should be easier to interpret. This

process is called 'geocoding'. Several geocoding transformations are based on digital elevation

models (DEM), especially in moutainous areas. Domik (1985) used image simulation; Raggam,

Strobl, and Triebnig (1986) used squint angle condition and bundle adjustment; Meier and Nfiesch

(1986) used doppler information and target point velocity; Kwok, Curlander, and Pang (1987) used

doppler information and a three pass resampling.

Most of the current approaches determine in a first step control points. A control point identifies

the locations of one feature in reality in both data sets. It is represented by a pair of coordinates

that is used to establish the geometrical correspondences between the two data sets. The set of all

control points could be input to the geometric rectification procedure which combines interpolation

and resampling or it could be simply used to localize a given object point in both data sets.

If both data sets show similar characteristics then similarity of image features can be used to

find control points. But this is not possible if the data look completely different. In some cases one

data set can be transformed such that the result shows optical resemblance with the other data set

(at least locally). Then corresponding features can be detected by local similarity measurements

(e.g. correlation). Most of the common methods compare pixel values of both images. Guindon

(1987) and Sasse (1989) use automatic correlation to find the control points; Strobl (1986) uses

manual matching for that purpose.

In the geocoding of SAR images, DEM data are often used to simulate the SAR geometry. But

such geometric image transformations are computationally very expensive operations and have to

be repeated not seldom to further adjust transformation parameters.

In Kropatsch and Strobl (1990) we have designed a different strategy to integrate SAR images
and DEM data. The idea is based on the fact that real world objects are mapped differently in both

data sets. Therefore we need also different operators to detect instances of the same object in the

two data sets. Such feature detectors produce sets, F1 and F2, of image features with individual

properties and with feature-to-feature relations in both data independently. Knowing the formation

principles of the data sources, properties and relations of the features can be derived from properties

and relations of the real world objects. Hence features from F1 and F2 can be matched via the

corresponding objects in reality. This general approach has two main advantages:

1. Since image operators are derived from properties of real objects, the resulting features also

relate to the semantics of these objects. Real world knowledge as a third information source

can be efficiently applied for further processing.

2. The image-to-feature mapping reduces the data amount considerably, while, at the same

time, the expressive power of the vocabulary to describe the image contents (e.g. the fea-
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tures) increases. Lessdata can be matched with lesscomputation and more featurescan
be differentiated by the greater vocabulary. Moreover, this generalization (or abstraction)
processcanbe repeated.

2 SAR processing

Global characteristics of a SAR image include the parameters of the range projection, the resolution,

and the flight path of the sensor. DEM data do not contain information about the type of the surface

cover which is an important constituent of the SAR image. SAR images of mountainous areas often

show characteristic features that do not severely depend on the backscattering of the surface cover:

layover and shadow. Due to the multiplication of signals, layover regions appear brighter than

the surrounding regions. Shadow regions, which appear as dark regions in the SAR image, are

independent from the backscattering of the imaged terrain.

Figure 1: SAR-image of Iceland Figure 2: Layover regions

The flight path allows to distinguish between foreslopes and backslopes of the mountains. Fores-

lopes are oriented towards the sensor's path on the ground and are the (only) areas where layover

can occur. Backslopes face the opposite direction and cannot be reached by the radar beam under

certain imaging conditions (low sensor position or steep slope). Both types of features can be de-

tected in a SAR image (Fig. 1) by a combination of noise elimination (i.e. filtering), thresholding,

and connected component labeling (Pl6t3nig, Billington, and Kropatsch, 1989; P16gnig, Kropatsch,

and Strobl, 1989 ). The result is a set of layover and shadow regions in the SAR image (e.g. layover

regions in Fig. 2).
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3 DEM processing

Global parameters of a DEM are a reference coordinate system and the resolutions both in the

ground plane (Ax, Ay) and in the elevation (Az). Using the parameters of the SAR flight path, a

sequence of operations is applied to the DEM data in order to detect layover and shadow regions

also in the DEM geometry. The mathematical model (Kropatsch and Strobl, 1990 ) is based

on differential analysis of the range and look angle functions derived from a continuous terrain.

The discrete implementation includes local differentiation and a pointwise computation of decision

functions. A search is necessary to complete the layover and shadow regions by their passive parts.

3.1 Layover in the DEM

The characteristic radar measurements are range - the distance from the sensor to an object point

- and time - the position of the sensor along its flight path where the data are collected. They

define the two dimensional SAR image space.

Layover is called the radar mapping, where different object points having the same time and

the same range are mapped into one image point, i.e. more than one points on the Earth's surface

are mapped into one image point (many to one mapping). SAR mapping is mainly an integration

of reflected signals having the same doppler frequency (azimuth or along track measurement) and

the same distance (range or across track measurement).

In the object space the layover region splits into active and passive subregions. Active layover

regions are the sources for layover (points that produce tayover in the SAR image) whereas layover

passives are only part of the layover because the active parts lay over them. The active layover

region is embedded in two passive regions (called 'near passive' and 'far passive'). The calculation

of the passive regions needs sequential search when no image simulation technique is used. In the

image space there is no such distinction.

Since layover only occurs in an across track line (imaging time t = const) it necessitates to

study profiles along iso-azimuth curves. At any time t, the (x, y, z)-DEM coordinate system can

be transformed into a sensor ground-centered coordinate system (Fig. 3), where the sensor receives

coordinates (O, zt) and any object point is located on a curve (s, z(s)), s measures the length of the

ground projected iso-azimuth curve (z = 0) between the nadir point (zt, yt) (s = 0) and the object

point (z, y).

The relevant SAR mapping equation for the slant ranges r(s) is defined by

+ (i)

In the iso-azimuth curve z(s) of a SAR image the phenomenon of layover occurs, when the range

r(s) decreases by increasing nadir distance s (Fig. 3). If a plane terrain (parallel to the z, y-plane)

is mapped this function is continuously increasing since the height difference of the sensor and the

imaged object point is constant ((zt- z(s)) = const). In hilly or mountainous terrain the height

z(s) takes different values. This circumstance produces layover in the SAR image when the height

z(s) increases faster than the nadir distance s. This region is bounded by a local maximum r(B)

and a local minimum r(C) in the range (i.e. _ - 0). It is called the active layover region. It canOs --
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Figure 3: The elevation-range diagram of a SAR layover (LO).

be calculated by differentiating

0r(s) r _Oz(s)s - (zt - z[s_) os

Os r(s)
(2)

Since r(s) > 0 for all s > 0, a decision function R(s) ( _°_-r-_= r_sj 0s can be determined which

decides for a given object point (s, z(s)) whether it belongs to an active layover region or not:

0z(s)
R(s) = s - (z, - z(s)) Os (3)

R(s) < 0 defines the active layover subregions. R(s) = 0 defines the exact boundaries s = B

and s = C of the active layover region.

Since layover occurs, when more than one object point is mapped into a single image point,

regions s < B and C < s are also part of the layover. Knowing the maximum range r(B) and

minimum range r(C) of a layover interval, the ranges of passive regions [A, B) and (C, D] have to

be within this range interval too.

Figure 4 shows the layover regions that have been extracted from the DEM data. The area

corresponds to the windows in Figures 1 and 2.

3.2 SAR shadow in the DEM

Shadow in a SAR image is called the region, where an object point is not reached by any radar

beam. Such object points produce a 'zero' signal in the image. Therefore shadow regions appear in

the SAR image as dark areas corrupted by noise.
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Figure 4: Layoverfrom DEM
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Among object points which are part of the shadow region we distinguish points belonging to the

active (own shadow) region of an object or belonging to the passive (cast-shadow) region, which

is produced by another object located closer to the sensor (Fig. 5). In the image space there is no

such distinction.

Since shadow only occurs in an across track line (time t = const) it also necessitates to study

iso-azimuth curves. The relevant SAR mapping equation for the look angle a(s) is defined by

= arctan (4)

In the iso-azimuth line of a SAR image the phenomenon of shadow occurs, when the look angle

c_(s) decreases by increasing nadir distance s (Fig. 5). If a plane terrain (parallel to the x,y-plane) is

mapped, this function is increasing when the height difference of the sensor and the imaged object

point is constant. In hilly and mountainous terrain, shadows appear in the SAR image wherever

the height z(s) decreases faster than the nadir distance s increases. This region is bounded by a

local maximum c_(E) and a local minimum c_(F) (i.e. _ = 0), and is called active shadow region.

It can be calculated by considering the sign of the derivative

z, +-- S 0s

- (5)

A simple decision function A(a) can be defined similar to R(s), to decide whether a given object

point (s,z(s)) belongs to an active shadow region or not.

saz(s)
= z,- z(s) + (6)

A(s) < 0 defines the active shadow parts. A(s) = 0 defines the exact boundaries s = E and s = F

of the active shadow region.

In contrast to layover where two passive regions occured here we have only one additional

passive shadow region. It is located at the end of the active shadow, where the nadir distances s

are increasing.

Both layover and shadow regions may also overlap. Two or more overlapping layover regions

cause the multiplicity of the signals to further increase. Overlapping shadows result in the union

of the single shadow regions in a mixure of active and passive parts. A shadow in a layover effects

the multiplicity of the signal. All possible interactions between layover and shadow can be found

in Strobl (1989) and Kropatsch and Strobl (1990).

3.3 Layover and Shadow Map

The discrete implementation of the above decision functions marks each cell of the DEM with labels

layover, shadow or none, with further distinction between active and passive parts (Fig. 9 codes

active layovers in white and passive parts in gray). Subsequent connected component labeling of

this 'Layover and Shadow Map' (LSM) delivers the lists of regions corresponding to the regions in

the SAlZ image.

We now summarize the algorithmic steps to calculate the LSM. The complete derivation is given

in Kropatsch and Strobl (1990).
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Let the DEM grid be defined by (i,j)with i = 1,...,n;j = 1,...,m; let the position of a

grid cell be (xi,j, yi,j) with height z_,j. The parameters of the flight path (xt(t), yt(t), zt(t)) allow to

compute the imaging time ti,j for every grid location by trilinear interpolation (Raggam 1988). The

nadir distance si,_ can be calculated by

(7)

Using the spacing of the DEM grid (Ax, Ay), the iso-azimuth direction ¢i,_ can be approximated

by central difference of the first derivative of imaging times

cos ¢i,i = ti+ld -ti-l,i sin ¢i,j = tl,j+_ -ti,j-_
2Ax ' 2Ay (8)

(9)

Using central differences again, the terrain slope in across track direction becomes

OZi,j Zi+l,j -- Zi-l,j Zi,j+l -- Zi,j-1 sin &i,j- (10)
08 -- 2AX COS dPi,j "t- 2Ay

The above computations deliver the values si,j zt(ti,j), and °-sw- to compute the decision functions0s

R(si,j) and A(si,j) for the active parts of layover and shadow respectively.

If the passive parts are needed, the precise boundary ranges, r(B) and r(C), r(E) and r(F)

rasp., must be interpolated for every range profile that crosses such regions. A search across track

must be performed in order to delineate the boundaries of the passive parts.

4 Matching

The comparison and matching of the two sets of regions (i.e. three layover regions in Figures 6 and

7) includes the following measurements:

• For a single region:

- type: layover or shadow;

- the center (of gravity);

- the size and orientation;

- shape characteristics like

• medial axis or

• segments of the boundary.

• For a local configuration of regions:

- the distances between pairs of regions;

- the relative positions between pairs of regions;

- the adjacencies.
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Figure 6:3 SAR-layover regions Figure 7: match 3 DEM-layover regions.
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• For the entier image:

- the parameters of the geometric mapping;

- the accuracy of the resulting transformation.

An experiment using a 2 x 2/2 curve pyramid demonstrates a coarse-to-fine strategy for efficient

layover matching (Fermfiller and Kropatsch, 1989 and 1990 ).

In a curve pyramid, the boundaries of all layover (or shadow) regions are stepwise reduced

in resolution. Such curve reduction (Kropatsch, 1985 ) preserves the connectivity but shrinks the

length of the curve (Kropatsch, 1987 ). In the bottom-up building process closed boundaries survive

until a resolution cell completely covers the corresponding region. We therefore continue reducing

the resolution until only a few boundaries of large layover regions remain. Fig. 8 shows the base

level (1) of a curve pyramid derived from the SAR layover regions of Fig. 2 and level 5 of this

pyramid. All major shape characteristics ave preserved while a lot of small detail, which is mostly

due to noise, disappeared.

Building this curve pyramid for both the SAR- and the DEM-regions reduces the complexity of a

rough matching to a couple of large regions that have to be compared with each other. The accuracy

of that match is then stepwise refined in a top-down process, that uses the match approximation

of the level above to match the higher resolution curves. If implemented on parallel hardware this

automatic control point determination algorithm would require only O(log n) computational steps.

5 Possible extensions and drawbacks of the method

There are several possible extensions to the proposed method. We just enumerate a few of them

without investigating the details.

• The calculation of the shadow regions in the DEM could also be interesting for other types of

images, e.g. optical images with shallow sun angle.

Using smoothness constraints and backscattering characteristics from the surrounding of lay-

over regions, the integral information in (small) layover regions could be separated into its

constituent parts in the ground reference.

The proposed method depends on the knowledge of the sensor's flight path for the calculation

of both the layover and the shadow regions. To relax this requirement, the DEM could be

preprocessed to preselect the potential shadow and layover points by only rough estimations

of the flight altitude and flight direction. A variation of this preselection was useful in the

acceleration of the sequential implementation of the algorithm.

The weakest (computational) component of the algorithm is the (sequential) search for the

boundaries of the passive regions. Although the search in parallel across track curves could

be done in parallel it still depends on the diameter of the region.
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Figure 9: Layoverand shadowmap and geocodedSAR-image.

6 Conclusion

A feature-based approach to the integration of SAR-images and DEM data is presented. The fea-

tures layover and shadow, which are characteristic for SAR images, are recognized independently

in both data sets using properties of these features that are specific for the respective data set.

Properties and relations of the resulting sets of layover and shadow regions allow to match both

data sets. A curve pyramid of the region shapes is an example for an efficient coarse-to-fine strategy

for matching. The resulting geometric correspondences allow the SAR image to be transformed into

the (map-) geometry of the DEM ('geocoding', Fig. 9), or, they allow to measure properties of other

(local) features directly in the SAR image, thus avoiding consequences of resampling errors, and

relating these measurements to the corresponding location in the DEM.
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Abstract. To use data from a number of different remote sensors in a synergistic

manner, a multidimensional analysis of the data is necessary. However, prior to this

analysis, processing to correct for the systematic geometric distorsion characteris-

tic of each sensor is required. Furthermore, the registration process must be fully

automated to handle a large volume of data and high data rates. In this paper,

a conceptual approach towards an operational multisensor registration algorithm

is presented. The performance requirements of the algorithm are first formulated

given the spatially, temporally and spectrally varying factors that influence the

image characteristics and the science requirements of various applications. Sev-

eral registration techniques that fit within the structure of our algorithm are then

presented. Their performance was evaluated using a multisensor test data set as-

sembled from the Landsat TM, SEASAT, SIR-B, TIMS and SPOT sensors. The

results are discussed and recommendations for future studies are given.

1. Introduction

In future years a number of spaceborne remote sensing instruments will be opera-

tional. These instruments will gather data over a broad range of the electromagnetic

spectrum allowing scientists to study the physical, chemical and electrical proper-

ties of the Earth's environment on a global scale and over an extended period of

time. To derive geophysical parameters of interest for each of the planned science

applications, the data collected by these sensors must be combined and analyzed

in a multidimensional manner. However, the sensors may be on different platforms

and in different orbits, have different physical characteristics, viewing geometries,

and data collection and processing systems. Consequently, systematic and nonsys-

tematic registration errors will exist between coincident multisensor data samples.

It is a prerequisite for synergistic analysis of these data to remove such errors.

Furthermore, because of the anticipated large data volume and high data rates of

future high resolution sensors, it is necessary to develop an automated multisensor

registration process that requires no or little operator supervision.
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Considerableexperience has already been accumulated in the operational registra-

tion of Landsat data (e.g. Grebowsky, 1979). However, these techniques are not

well adapted to the registration of image data from multiple sensors of significantly

different characteristics operating at different wavelengths. A robust and adaptable

automated multisensor registration technique must be developed.

In this paper, a high-level algorithm that integrates several registration techniques

is presented. First, a formulation of the performance requirements for development

of an operational algorithm is given. These requirements are derived from the needs

of several key science applications as well as a review of practical limitations given

the image characteristics. We then describe the multisensor test data set that has

been assembled for evaluation of several computational techniques that fit within

the structure of our algorithm. One registration technique that has been evaluated

uses high resolution digital elevation models (DEM) of the areas to be registered.

Others, which operate in the absence of ancillary data, are based on the extraction

and matching of scene features across the different images to be coregistered. The

results are discussed and recommendations for future work are given.

2. Performance Requirements

2.1 Characterization of the Input Data

A number of spatially, temporally and spectrally varying factors influence the image

characteristics and the registration accuracy.

Due to the finite precision of the estimate of the platform ephemeris and attitude,

absolute location errors and geometric distortion affect the geometric quality of

the imagery. Such errors can typically be removed by the use of tiepoints. How-

ever, nonsystematic errors and tiepointing bias the image location, and a final step

of precision registration is required to achieve sub-pixel level accuracy. The ge-

ometric quality of the data is also affected by the presence of topography in the

observed scene. For an active sensor like a synthetic aperture radar (SAR), pre-

dominant terrain-induced geometric distortions such as foreshortening and layover

(Lewis and Mc Donald, 1970) constitutes additional difficulties. Rectification of
these distortions is essential before registration of the data. As an illustration, a

perspective view of geocoded and rectified multisensor imagery is _hown in Figure

1 using a technique described in (Kwok et al., 1987).

For sensors on different platforms and in different orbits, the acquired data are

intially sampled to grids that are more natural to the sensor geometry than that

of multisensor registration. A common grid for image coregistration, such as an

Earth-fixed grid, is required. The process of mapping image data into this grid is
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knownasgeocodingand has been developed for a variety of sensors including SAR

(Curlander et al., 1987).

Multisensor registration will be affected by the large variability in spatial resolu-

tion of the data to be registered (from tens of meters (SAR, HIRIS) to kilometers

(MODIS, HMMR) in the future NASA Earth Observing System (EOS) platform).

Since resolution defines the ability of a system to discriminate small details within

a scene, it establishes a limit for the achievable registration accuracy.

System noise (i.e. thermal noise, quantization noise, bit error noise, etc.) will also

affect the registration accuracy, because many of the techniques used for registration

are very sensitive to noise. While all sensors are corrupted by additive noise from

the receiver electronics, SAR images are additionally corrupted by multiplicative

noise known as image speckle. Thus the multisensor registration techniques must
be robust to noise of a variety of statistics.

An additional consideration in any registration scheme is the scene composition.

In cases where only a few features can be positively identified across the various

sensors, the registration accuracy may be seriously inpaired. Furthermore, identifi-

able features are inherently space, time and frequency dependent. Therefore, it is

necessary to develop robust automated techniques of selection of invariant features

across the multisensor data.

In view of the above remarks, the input and output data requirements for an op-

erational algorithm can be formulated. They define the operational domain and

conditions under which the multisensor algorithm is expected to operate, and can

be used as a basis for the evaluation of candidate algorithms.

2.2 Input and Output Data Requirements

The input data shall be corrected from the geometric distortion characteristic of

each sensor using the best information available, geocoded onto a preselected grid

common to all sensors (e.g. UTM), and resampled to the same pixel spacing. The

signal to noise ratio of the data shall be better than 5 dB. The geodetic accuracy

of the input images shall be better than 500 meters or 10-50 pixels. It is expected

that most sensors will do better than this since most of them will have an accurate

geographical location system on board.

The output products shall have a registration accuracy of less than one resolution

element. This requirement is derived from a subset of application being considered
for multisensor data analysis.
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In the case of change detection, sub-pixel accuracy is desired to compare the re-

sponse of individual pixel elements. Depending on the scene characteristics (pres-

ence of identifiable features) this requirement may be very difficult to achieve. In

other cases, for example in the global study of hydrological cycles (which includes

tasks such as sea-ice identification and dynamics, determination of moisture content

of soil and vegetation, vegetation identification, areal extent and growth, etc.) a

registration accuracy of several resolution elements may be sufficient.

It is important to point out that although the accuracy requirements have typically

been well defined for each individual instrument, little or no accuracy requirements

have yet been clearly defined for multisensor registration by the scientific community

(EOS, 1987). More work is clearly needed in this area for each interdisciplinary

science application.

3. Multisensor Test Data

A multisensor test data set has been assembled using image products from SEASAT

SAR, SIR-B SAR, Landsat TM, SPOT, and TIMS (Kwok et al., 1989). Information

on each sensor, including look angle, spectral range, polarization and spatial reso-

lution is given in Table 1. Geocoding of the images to a common UTM Earth-grid

has been performed and the data have been resampled to the same pixel spacing of

25 meters. Several sub-images of reduced size (512 x 512, 1024 x 1024 pixels) were

selected from the areas where the sensors have coincident coverage. The characteris-

tics of the original image data and of the selected sub-images are presented in Table

2. This table includes information about the geographic location of the data, the

initial sample spacing and size, the revolution number and date of acquisition, the

number of selected sub-images and the type of map projection used for coding. A

summary list of the natural features present in the imaged scenes is also indicated.

For each selected sub-image, manual registration was performed, resulting in an

estimated relative misregistration uncertainty of less than =t=2 pixels, roughly equal

to the largest resolution element (40 meters). This uncertainty results from the

differences in resolution between the various sensors. This estimate is used as a

basis for the true registration for quantitative evaluation of the performance of

various automated registration techniques.

4. Automated Multisensor Registration

The structure of the candidate multisensor registration algorithms is presented on

Table 3. The input data satisfy the requirements as formulated in the previous sec-

tion. The first processing step consists of automatically selecting sub-frames from

each input image to define local areas of multisensor coincident coverage where pre-
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cision registration can be performed with a high confidence of success. Depending

on the availability of ancillary data (DEM or cartographic maps) a registration

mode is selected. For the case where DEM is available the multisensor data are

coregistered to the common grid provided by the DEM. Otherwise, invariant fea-

tures are extracted from the sub-images and correspondence is established across

the data to be registered. To reduce the computational complexity of the algorithm

and obtain several estimates of the misregistration per sub-image, feature match-

ing is performed at multiple locations and the results are then filtered to evaluate

their relative spatial consistency within the selected patch (local constraints). If

the match can be labeled as statistically significant (e.g. satisfies some goodness

measure), the misregistration error of the selected sub-image is estimated and the

multisensor data are then registered. Otherwise, the result is rejected and the

selection and matching process is repeated with different parameters. At a higher-

level of processing, the combined results from different features and from registered

neighborhood patches (global constraints) can be used to produce a more accurate

and more reliable solution. In effect, a cooperative process can be established where

the results from different stages of the processing are used as reinforcements for the

entire process.

Several candidate techniques which are effective within this structure are presented

in the remainder of this section. They have been selected based on compatibil-

ity, robustness and adaptivity to the various sensors. Each matching algorithms'

performance is assessed using the multisensor test data set described in the last
section.

4.1 Automated Selection of Sub-images

Selection of the patches where fine registration is desired must be based on the

extraction of stable features that can be unambiguously identified across the entire

multisensor image data set. The difficulty is to formulate an approach without

a-priori knowledge of the scene content. One possible technique has been described

in (Davis and Kenue, 1978) where binary edge maps are used to compute a figure of

merit for candidate control points. The results obtained with images from different

sensors are then cross correlated to retain valid candidates.

4.2. Automated registration to digital terrain data

Our approach is to simulate multisensor imagery from a digital elevation model

(DEM) of the area where the sensors have a coincident coverage and register this

simulated imagery with the actual imagery, thereby inducing coregistration of the

multisensor data on the common grid provided by the DEM.
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Using elevation data, viewing geometry and a model of the scene reflectance, the

appearance of the scene for any given sun angle and viewing angle can be simulated

as in (e.g. Horn and Bachman, 1978) for passive sensors operating in the visible and

near-visible part of the spectrum. An example of a synthetic image generated using

this technique is shown in Figure 2. The illumination parameters were matched to a

Landsat TM image data acquired over the same area. A simple matching technique

(area-correlation) is then used to establish the correspondence between the images.

The registration error is approximately 80 meters for the images shown.

Our approach to generate simulated SAR image from the DEM is similar to that

described above. The sensor imaging geometry, the elevation data and a model of

the radar backscatter are all required to produce the image shown in Figure 3. The

imaging geometry simulates that of a SEASAT image acquired over the same area.

An area correlation scheme is then used to match the radar and simulated images.

Using tiepoint measurements of identifiable features not within the image shown, a

misregistration error of 60 meters was obtained.

Several potential error sources affect the registration accuracy, including the the

uncertainty in the actual imaging geometry, the geometric accuracy of the DEM

data (height), and the reflectance model used for the optical data.

4.3 Computational Approaches

In the absence of reference maps, elevation data, geographical information or cor-

relative ground truth information, blind techniques based on the identification of

invariant features across the data can be used for image registration.

A. Feature extraction

Candidate features commonly used in digital imagery include edges, regions, lines,

vertices of line intersection, shapes, etc. These features must be robust to change

in sensor geometry, wavelength, SNR and noise statistics. Two particular types of

features, region boundaries and edges, were examined using our multisensor data

set.

Multisensor region boundaries extraction

Region boundaries are one of the simplest invariant low-level features than can be

used to characterize the misregistration.

Even though many unsupervised segmentation techniques exist for optical images,

most of them are not effective for SAR images because of the presence of speckle
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noise. One unsupervisedtechniquethat seemsto work reasonablywell is a scheme
basedon a clustering algorithm to segmentthe imagesinto severalregionsof sim-
ilar intensity and texture (Kwok et al., 1989). The region boundaries are then
established where a class transition occurs.

A resulting segmentation map, using 3 classes, is shown on Figure 4 together with

the original images from SEASAT, Landsat, and SPOT. A 3 x 3 pixels window

was used at each pixel location to compute the mean grey level and grey level

texture via a simple standard deviation measure. The results obtained by matching

these region boundaries are usually less accurate than those obtained with other

techniques. However region segmentation can still be refined, especially in the

case of SAR imagery, to provide information that complements results from other

techniques.

Multisensor edge detection

An extensive literature exists on the subject of edge detection in optical imagery.

However, in the case of SAR images the detection process is complicated since the

images are corrupted by speckle noise. Techniques based on an approximation of the

first and second directional derivatives (e.g. Sobel, or Robert operators) perform

poorly, especially in terms of localization of the edges since they tend to produce

large responses. Statistical edge operators (Touzi et al., 1988, Frost et al., 1982) in
a lot of cases suffer from the same limitation.

This problem is solved by regularization techniques, specifically using a two-dimensional

Gaussian smoothing operator as in a Marr-Hildreth operator (Mart and Hildreth

1980) or a Canny edge detector (Canny 1983). These operators typically have good

detection and localization properties without multiple responses to a single edge,

the three performance criteria for evaluation of edge detection algorithms. Theo-

retically, these techniques are compatible to almost all types of remote sensor data.

Their performance with optical data have been documented in the literature (Marr

and Hildreth 1980, Canny 1983).

The performance of these two operators was quantitatively compared in (Kwok and

Rignot, 1989) in the case of synthetic SAR images as well as actual SAR images. It

was shown that the gradient operator outperforms the Laplacian operator in both

detection and localization of edges in image speckle.

Significant improvments in the performance of the VG operator can result from

optimizing the parameter selections. In particular, the value of the filter spatial

width a must be adapted to the spatial resolution of the different sensors. Automatic

thresholding is another important factor. In our implementation, a threshold with

45



hysteresis as in (Canny, 1983) is used to eliminate insignificant edges. Further
post-processingsuchasthinning and contour-filling techniqueshavebeenshownto
improve the quality of subsequentmatches. Another possibleimprovement of the
edgedetector usesmultiple operator widths and combinesthe resulting edgesusing
a technique called feature synthesis,where the responsesof the smaller operators
are used to predict the responseof a larger operator. Some results with optical

images have been presented" in (Canny 1983).

For illustration, one example of edge-map using SEASAT, Landsat TM and SPOT

data and the Canny edge detector with a spatial width of 2 pixels (40 m) and

adaptive thresholding is presented in Figure 5.

B. Feature Matching

Candidate feature matching techniques include binary cross correlation, distance

transform / Chamfer matching, dynamic programming, and structural and symbolic

matching.

In the case of region boundaries and edges a convenient binary representation of the

feature maps can be used, a grey level of one at location of a feature-point and zero

otherwise. This representation reduces the computational complexity of feature

matching since computational cost becomes proportional to a linear dimension as

opposed to area correlation where computational cost is proportional to an area.

Binary correlation

The binary feature-maps of each of the images to be registered can be cross corre-

lated for various relative image shifts. The shift corresponding to the peak of the

cross correlation will be an estimate of the actual misregistration between the im-

ages. The process is fast and can be efficiently implemented on an array processor

or vectorizing computer.

Distance transform and Chamfer matching

The distance transform and Chamfer matching are described in (Barrow et al.

1977). In this method feature-points are matched by minimizing a generalized

distance between them.

A distance transform is first applied to a binary feature-map, arbitrarilly refered

as the source image. The result of this transformation is a distance map where

the grey level of each pixel is a measure of the distance between the pixel and the

nearest feature-point. For various values of the relative shift between the source and
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the target images,the total distance betweenthe feature points of the two images
can be computed. This measure is the sum of the distance valuesread from the
source image at eachlocation of a feature-point in the target image. If matching
were perfect, this distance would be zero. The relative shift that produces the
smallest total distancecorrespondsto anestimateof the actual relativetranslational
misregistration betweenthe imagesto be registered.

This method is more robust to distortion or residual rotation effectsthan a binary
correlation method.

Comparison of binary correlation and Chamfer matching

The time of computation of the binary correlation is less than the time of computa-

tion of Chamfer matching, typically in the ratio 1 to 4 for a search area of 100 x 100

pixels using a 512 x 512 pixel image. The tolerance to residual rotation effects is of

1 degree in the case of the binary cross correlation based on a maximum registration

accuracy of 2 pixels. This tolerance is improved to 3 degrees when thicker edges are

used (3 pixels wide instead of 1) (Wong, 1977). In the case of Chamfer matching

the rotation tolerance is of 3 degrees. Better registration results (10 to 20 %) were

consistently obtained by binary correlation as compared to Chamfer matching. The

reason is that the quality metric used during Chamfer matching does not perform as

well as expected with multisensor data due to the presence of non-matchable edges

across the data, i.e. edges that appear in one image and not in the other. Their

presence biases the total distance between feature points and significantly affects

the accuracy, whereas the binary cross correlation is not affected by non-matchable

edges.

Dynamic Programming

This iterative method, combined with an autoregressive model (AR), was used in

the work by (Maitre and Wu, 1989) to register severely distorted optical images to

a reference map without a-priori knowledge of the distortion. The two processes

work at a different level. The AR model defines the deformation of the image at

a pixel scale, and dynamic programming optimizes the search for best registration

of an ordered sequence of features or primitives (usually edges) with a comparable

sequence of features extracted from a reference map. The technique is robust in

the presence of non-matchable edges. Good results are shown in (Maitre and Wu,

1989) using NOAA-7 satellite data.

This method has not been tested yet using the multisensor test data set, but offers

good potential.
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C. Constraint Filtering

In practice, matching is performed on small areas (typically 256 x 256 pixels or less)

to minimize the distortion. Thus, the time of computation is also reduced and the

number of estimates of the misregistration between the two images is increased. The

resulting data must therefore be filtered to eliminate false matches. A clustering

technique can be used where the cluster centroid corresponds to the estimated

misregistration of the images.

At a higher level, results obtained from several feature matches are used to improve

clustering of the data. Results from neighborhood patches can also be included.

4.4 Experimental Results

Twelve 512 x 512 pixel images corresponding to 3 different geographic areas have

been registered. Each image was divided into 4 sub-blocks, and the search area for

the local registration shift was 101 x 101 pixels in each sub-block.

In the case of the images from SEASAT and SPOT, the rate of success of the binary

correlation of edges was 87 %, and increased to 92 % after constraint filtering, with

no false matching. In the case of images from SEASAT and Landsat TM, the rate

of success of the same technique was 85 % before constraint filtering, and 86 %

after. Registration was qualitatively more difficult in that case because of the lower

resolution of the Landsat images as compared to SPOT images, and also because a

few additional scenes where registration was more difficult was used.

The registration accuracy of the multisensor data was approximately ± 2 pixels (40

m). The achievability of sub-pixel accuracy seemed difficult to establish by visual

inspection of our multisensor test data set, a fact that is a common problem when

comparing digital imagery from multiple remote sensors.

5. Conclusions and recommendations

It is of considerable importance to develop automated multisensor registration tools

for synergistic use of the data from a variety of spaceborne sensors. A high level

algorithm that integrates a variety of registration techniques in a systema_ ic manner

was presented in this paper. It was tested using a somewhat limited multisensor

test data set. A more complete study would enlarge this data set to include more

instruments arid more scene types. Additional techniques for feature extraction and

feature matching also need to be evaluated in a follow-on study.

The performance of a multisensor registration algorithm is dependent on the sci-
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encerequirementsof the particular applications aswell as the characteristicsof the
instrument, the imagedsurfaceand the environmental conditions. This very com-
plex task cannot be solvedwith just a single technique,but will require combining
severaltechniquestogether that work in a competitive-cooperativemode of interac-
tion. For this reasonit seemslogical that a rule basedartificial intelligence approach
may be necessaryfor the high level algorithm to select the optimal techniquesand
parametersfrom a particular multisensor application.
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(a) (b)

Fig. 1. Perspective viewing of multisensor geocoded and rectified images of an area

near Los Angeles, California: (a) SEASAT radar image; (b) Landsat TM, band 4,

image.
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(a) (b)

Fig. 2. Comparison of simulated versus actual Landsat TM image: (a) simulated

image: (b) actual image.
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(a) (b)

Fig. 3. Comparison of simulated versus actual SEASAT radar image: (a) simulated

image: (b) actual image.
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Fig. 4. Unsupervised segmentation of Optical and SAR images from an area near

the Altamaha River, Georgia. (a) SEASAT, (b) Landsat TM, and (c) SPOT images

are segmented into 3 regions represented in (d), (e), and (f) respectively. The

corresponding images of region boundaries are (g), (h), and (i) respectively.

54



E_
EGo

...%v,_

o__

°_

°_

0 _ 0_

ORiGinAL PA_:'_ IS
OF POOR QUAMTY

55



C
°_

0
>

0

0

0

_r_
,_

0

0

_ 0

_ o

IJ_E E E

J

0
U}

z

_- _ m
0 _ _rf u_

:_ _ _ _- za

Z

I-
0
n

56



a0

0

o_

E
_p

0

0
°--

"Z,

(¢)

cd

,.o

_o

w o

-_ _
_o _ o_

o>_ o._

1.1.1
O0 _-

[-

_. _=_ ooa_oZ u_

__x o r-_

"-" o

,_. ,,_.Z _ ,,-

CO X O.ZZ _ _

Z . _ ,_ ._"6 __ ._

i,LI

,_ co u') ZD _ ..

(/) "_1" "-_ cO 0_

t- c-

"_" o v o

co
>e Or- _ _-- X 0 c- _

_ m v_ m_

•g_ '_6_

> -_.__ _-o __ m _ .__ --
rr'oo0:_ :.:o rr 000=_ _o

_! _ ,_ _-_
.- ,, _ ,.-_ _ _ _o _

0. -
"I

A

E

0 "
D N

5_

0 Q)

:ELZ

o
7 _ ,..

"-" _.) o
o0 x o c- ,,,,-- ,_•

n O0 rr _ ¢n

c-

t,_
v o

x 0 c" _ _

_ el) n" :_ m

_ m

_5_ _,.

> _ _ _-"6¢) _.__

IJJ
._1 '¢_ E

rr ,,
>0
-,-__ _,
k-.._

m 0 ,,

57



58



N91-15620
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FOR FOREST DAMAGE ASSESSMENT
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Wastiangasse 6, A-8010, Graz, Austria

Tel. (316) 8021, Telefax (316) 8021-20,

E-Mail: poelzleitner@rzj.fgj-graz.ada.at

The detection and monitoring of stress and damage in forested areas is of utmost importance to forest
managers, who require timely and accurate information on the state of health and vitality of this natural
resource for planning purposes. The extensive and often difficult-to-assess nature of many of the world's
forested regions makes remote sensing the most suitable means to obtain this information. This requires
that remote sensing data employed in a forest survey be properly chosen and utilised for their ability to
measure canopy spectral features directly related to key tree and canopy properties that are indicators of
forest health and vitality.

Plant reflectance in the visible to shortwave infrared regions (400-2500 nm) provides information on its
biochemical, biophysical, and morphological make up, whereas plant fluorescence in the 400-750 nm
wavelength region is more indicative of the capacity and functioning of its photosynthetic apparatus. A
measure of both these spectral properties can be used to provide an accurate assessment of stress or damage
within a forest canopy. What is necessary is to define the specific wavelengths within these spectral
regions that provide optimal information on a plant's health and vigor.

Foliar chlorophyll and nitrogen are essential biochemical constituents required for the proper functioning
and maintenance of a plant's biological processes. Chlorophyll-a is the prime reactive centre for photosyn-
thesis, by which a plant converts carbon dioxide and water into necessary plant products. Nitrogen forms
an important component of the amino-acids, enzymes, proteins, alkaloids, and cyanogenic compounds that
make up a plant, including its pigments. The measurement in a canopy by remote sensing methods would
allow the rapid appraisal of a forest's state of health. Both chlorophyll and nitrogen have characteristic
absorption features in the visible to shortwave infrared region that furnish information on their content
within a canopy. By measuring the wavelength position and depth of these features and the fluorescence
response of the foliage, the health and vitality of a canopy can be ascertained.

For a stressed Norway spruce forest in southeastern Austria, foliar chlorophyll-a and nitrogen content and
leaf area indices (LAD were derived and foliage reflectance and fluorescence measurements obtained from
samples collected at 50-m grid intervals over the test site. The discrete data sets were transformed into
continuum data sets in the form of isopleth maps, and resolution cells corresponding to the size of the
ground-projected pixels of the Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM), NS001
Thematic Mapper Simulator (TMS), Thermal Infrared Multispectral Scanner (TIMS), Airborne Imaging
Spectrometer (AIS-2), and Fluorescence Line Imager/Programmable Multispectral Imager (FLS/PMI)
sensor systems derived for each ground data set. These cellularised data sets served as the reference data
for evaluating the capabilities of the various remote sensing data used to differentiate stress or damage in
the test site forest, which served as a test model for the development of remote sensing-based algorithms
for more universal application. In addition to chlorophyll-a, nitrogen, and LAI data, other canopy bio-
chemical constituents, canopy biogeochemistry, soil geochemistry, and site slope, aspect, and elevation
information has been incorporated into the cell data bases. Examples of these will be presented in the
paper.
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Abstract

A new method is described for combining multisensory data for remote sensing applications. The

approach uses phenomenological models which allow the specification of discriminatory features that

are based on intrinsic physical properties of imaged surfaces. Thermal and visual images of scenes are

analyzed to estimate surface heat fluxes. Such analysis makes available a discriminatory feature that

is closely related to the thermal capacitance of the imaged objects. This feature provides a method

for labelling image regions based on physical properties of imaged objects. This approach is different

from existing approaches which use the signal intensities in each channel (or an arbitrary linear or

nonlinear combination of signal intensities) as features - which are then classified by a statistical or

evidential approach.

1 Introduction

Multispectral/multisource data acquired via remote sensing have been shown to be useful for a va-

riety of applications such as urban land-cover assessment, rain-rate classification, crop assessment,

geophysical investigation, and surveillance and monitoring for national defence activities. Various

techniques have been developed for combining the information in the different sensing modalities.

These techniques typically use statistical or evidential rules to achieve the desired classification.

The usual statistical approach consists of first forming a feature vector wherein each element

corresponds to the signal value (pixel gray level) from each sensor. This feature vector is then classified

by a statistical decision rule. Other features such as the mean intensity level in a beighborhood,

contrast, second and higher order moments, entropy measures, etc. have also been used as elements

of the feature vector, e.g. [1]. In such approaches, interpretation of the imaged scene based on the

fusion of information from the different sensors may be said to occur at the lower levels of analysis.

In some techniques, linear and/or nonlinear combinations of signal values from different sensors form

a feature, several of which are then fed to a classifier, e.g. [2]. In the latter case, interpretation may

be said to occur at higher levels of analysis, after an earlier stage of information fusion which extracts

discriminatory features. Other extensions to the standard statistical approach have been reported,

e.g., a fuzzy relaxation labelling approach for image interpretation has been reported [3] wherein a
Gaussian maximum likelihood classifier is used to provide initial probability estimates to the relaxation

process.

Different optimal classification rules have been developed for interpreting multisource data for
each of a variety of statistical models assumed for the data. The classifiers however do not address the

problem of choosing sufficiently discriminatory features from the infinite number of available features.

Such approaches therefore suffer from the disadvantage that the global optimality of the feature set

is impossible to guarantee. Also, training of such classifiers is difficult since very large training data

sets are warranted for achieving a reasonable error rate. It is also not clear what physical properties

of the imaged objects are being utilized by the classifier during the discrimination process.

Evidential approaches have also been developed for combining information from multiple sensing
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Figure 1. Combining thermal and visible data for surface heat flux estimation.

modalities, e.g. [4]- [6]. Such methods rely on a large set of heuristics rules which examine local
contrast measures for each sensor and compare outputs from different sensors to provide varying

degrees of support (certainty values) for a hypothesized class. A non-probabilistic framework is used for

updating these uncertainties to reach a final classification. Interpretation in such systems is attempted

at multiple levels of analysis. The rules, however, are based on manifestations of the differences in

the intrinsic physical properties of objects rather than on direct measures of the physical properties

themselves. Such approaches therefore do not fully exploit the synergy available in multisensor data
fusion.

Due to these reasons, it is desirable to first combine information from the different sensors based

on a physical model of the scene with the objective of evaluating intrinsic physical properties of the

imaged objects. Such an a_alysis allows for specification of physically meaningful and discriminatory

features which may then be used for scene interpretation by a probabilistic or evidential classifier at

higher levels of analysis.

This paper discusses the development and use of phenomenological scene-sensor models for the

fusion of information from infrared (IR) and visible data. A computational model is established in

which principles of heat transfer are used along with computer vision techniques to derive a map of heat

sinks and sources in the scene. The approach uses infrared imagery sensed in the 8pro - 12#m band,

monochrome visual imagery, and knowledge of ambient conditions at the imaged surface to estimate

surface heat fluxes in the scene. A feature which quantifies the surface's ability to sink/source heat

radiation is derived and is shown to be useful in discriminating between different types of material

classes such as vegetation and pavement.

It is assumed that the thermal image is segmented into dosed regions by a suitable segmentation

algorithm (e.g., [7]) and that the thermal and visual images are registered. The thermal image is

processed to yield estimates of object surface temperature. This process requires the formulation of

an appropriate model which relates scene radiosity to surface temperature, and received irradiation at

the thermal camera to scene radiosity. Several object and scene parameters such as surface reflectivity,
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emissivity,reflectedsceneradiosityareincorporatedin themodel.Thevisualimage,whichis spatially
registeredwith the thermalimage,yieldsinformationregardingthe relativesurfaceorientationof the
imagedobject. TheLambertianreflectancemodelis usedalongwith theshape-from-shadingprinciple
for this purpose.Theaboveinformationalongwith informationregardingambienttemperature,wind
speed,and the date and time of imageacquisitionis usedin a computationalmodel that allows
estimationof surfaceheatfluxesin the scene.Theestimatedsurfaceheat fluxesareusedto evaluate
a featurethat is closelyrelatedto the lumpedthermal capacitanceof the object. This featureis
shownto bea meaningfulanddiscriminatoryfeaturefor sceneinterpretation.A blockdiagramof the
approachis shownin figure 1.

Multisensoryimages,andin particular - thermal andvisual images,havebeenusedin the past
for evaluatinga roughestimateof thermalinertia for variousremotesensingapplications[8] - [10].
The previouslydevelopedmethodsuseverysimplemodelsof the sceneand of the energyexchange
phenomenaocurringat the imagedscene.In contrastto thesepastapproaches,thetechniquedeveloped
in this paperis basedon anexplicit andmoredetailedphysicalmodelof theenergyexchangein the
sceneand providesmoremeaningfulanddiscriminatoryfeaturesfor classification.

Theremainderof this paperis organizedasfollows.Section2 describesanapproachfor extracting
accuratesurfacetemperatureestimatesfrom infraredimagery.Section3 discussesthe computation
of relativesurfaceorientationfrom visual imagery.Section4 describes the estimation of surface heat

fluxes at the imaged scene. Section 5 discusses two different ways of using the surface heat flux

estimates for scene interpretation. Section 6 presents experimental results using real data, and section

7 contains a summary of the ideas presented in this paper.

2 Estimating Temperature from Thermal Images

A quantitative model has been derived for estimating the surface temperature of a viewed object using

the thermal image. Details of the derivation may be found in reference [11]. The salient points of this

model are presented below. The model is based on observations that are unique to the situation where

outdoor scenes are illuminated by solar radiation. The derivation of the model rests on the following

observations and results:

1. Most surfaces found in outdoor scenes may be considered to be diffuse emitters in the 8#m-12#m

band. Furthermore, they possess high emissivities in this band - in the range of 0.82 to 0.96.

Hence, a constant value of 0.9 may be assumed for the IR emissivity of all imaged surfaces in

outdoor scenes.

2. The radiosity of an object's suface in a natural scene comprises surface emission, reflected solar

radiation, and reflection of radiation that emanates from other surfaces. These components

contribute to the total irradiation at the IR detector. Only 0.1% of the total solar energy lies in

the 8#m - 12Ftrn band. Furthermore, the surface reflectivities to IR radiation are very low. On

the other hand, a large percentage of emission from scene objects lies in the 8#m - 12#m band

since their surface temperatures lie typically between 250K and 350K. Since IR emissivities are

also high the scene irradiation at the IR detector is dominated by emission from the surface of

the imaged object. The components due to reflected solar radiation and reflected emissions from

other objects may be safely ignored.

3. The view factor Foc between the camera and imaged surface depends on the viewing geometry

and typically involves the evaluation of complex integrals [12]. A reasonable approximation to
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d

Ao

Figure 2. View factor between camera and imaged surface. Ac is the circular viewing surface of the

detector, _ac is the solid angle subtended by the detector, Ao is projection of A_ onto the imaged

surface, d is the distance between the camera and the imaged surface, and 0¢ is the angle between the

surface normal and the viewing direction.

Foc is arrived at by making the following observations. Since the solid angle subtended by the

detector w_ is usually very small (on the order of 2 mrad) we can approximate the projection of

the detector's viewing surface onto the imaged surface to be a planar circular patch, denoted by

Ao in figure 2.

The approximations indicated above allow for the derivation of a simple model that relates the

surface temperature of the imaged object to the digitized value of the IR sensor's signal due to

irradiation at the sensor [11]. The resulting model is expressed as:

0.9 1 )_s(exp(C-_*_T) - 1) dA = K_,Lt + Kb (1)

where, C1 and C2 are constants in Planck's equation and have values: C1 = 3.742 × 10s W#m/m 2

and C2 = 1.439 × 104 #inK. T is the surface temperature of the imaged object, )_ is the wavelength

of energy, )q = 8#ra and )_2 = 12#m. Lt is the pixel gray level value of the digitized thermal image.

Ka and Kb are constants for a particular imaging setup and are obtained by appropriate camera

calibration as described below.

The model established above provides a simple algorithm for surface temperature estimation. At
el is created for different values of T;the outset a table of values of F(Ti) = 0.9 f_/ _5(_xp(V_/_T,)_l)d)t

via numerical integration of this expression. A scene containing two objects at two different known

temperatures is imaged. The corresponding gray level values are used in equation (1) to solve for the

constants Ka and Kb. Thereafter, the temperature of other surfaces in other scenes can be determined

by first evaluating the right-hand side of equation (1) using the corresponding gray level. Then the

table of values of F(Ti) created above is looked up for a matching value. The value of the associated

index Ti now provides the surface temperature estimate.
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In general, an exact match will not be found and a linear interpolation is performed as follows to

acquire a reasonably accurate estimate of the surface temperature. Consider a particular gray level

value Lt in the thermal image which corresponds to a surface temperature of Ts. Let the right-hand

side of equation (1) evaluate to G, i.e., G = K_Lt + Kb. On searching for a match in the table of

values of F(T_) assume that G is found to lie between adjacent entries F(Tm) and F(Tn) such that

F(Tm) < G < F(Tn). The desired value of surface temperature is then computed as:

T, = Tm + Tn -Tm (G - F(Tm)) (2)
F(T.)- F(T )

In deriving the above approach for temperature estimation, the effect of atmospheric attenuation

has been ignored. This is justifiable for the following imaging situations:

1. The surfaces whose temperatures are to be estimated appear in the same scene that was used

for calibration.

2. The distance between the calibration surfaces and the thermal camera is the same as the distance

between the surfaces whose temperatures are to be estimated and the camera.

3. The distance between imaged surfaces and the thermal camera is on the order of only a few

hundred meters [13].

If neither of the above conditions apply, appropriate models need to be applied to account for atmo-

spheric attenuation loss [13]-[15].

3 Inferring Surface Reflectivity and Relative Orientation

In order to estimate heat fluxes it is necessary to estimate not only surface temperature as described
above but also surface reflectance to visible radiation and also surface orientation relative to the

incident (solar) radiation. The visual image of the scene provides clues to both these quantities.

In the following discussion it is assumed that the infrared and visual images of a scene are spatially

registered, and that the images are segmented a priori into regions by a method such as that described

in [7].

The use of shading information to recover the shape of an object has been addressed by several

researchers, e.g. [16]-[20]. These techniques, however, can be applied only if certain conditions are

satisfied. The bi-directional reflectance distribution function of the surface must be known a priori.

Image resolution must be high enough to allow the rendition of several surface patches near the occlud-

ing boundary, or there need to exist background patches of known surface orientation surrounding the

region of unknown surface orientation. These conditions are difficult to satisfy when imaging objects

in a natural scene. We also note that while the aforesaid efforts attempt the problem of determining

the (x, y, z) direction cosines of the surface normals of the imaged surface, our problem is a much

simpler one, i.e., to arrive at an accurate estimate of cosOi, where Oi is the angle between the surface

normal and the direction of incident radiation. A simpler method may be used for this purpose as
described below.

Real surfaces in outdoor scenes exhibit a combination of diffuse and specular refiectivities. The

diffuse component has been found to dominate in commonly occurring surfaces [21]. Hence, it is

reasonable to assume that the imaged surfaces are Lambertian reflectors. If L_ represents the gray
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levelof a pixel in the visual image, the relative surface orientation of the surface patch corresponding

to that pixel is related to the brightness value by:

L,, = Kp cosOi + Cv (3)

where, Kp = p K_, p is the surface reflectance, K_, C,, are constants of the visual imaging system
and are determined via calibration. The calibration process simply consists of imaging two different

surfaces at known orientations to solar radiation and of known reflectivities, whence the constants Kv

and Cv are easily computed.

It is possible to obtain via stereoscopic image analysis, laser radar imagery, or from registered digital

terrain data, the orientation of one elemental surface patch in the entire surface that is represented by

a given image region. This orientation is best acquired for the elemental area that provides a reliable

estimate, e.g., one that lies within a large planar patch. The region reflectivity p is then computed

using equation (3). Knowing p, the value of cosOi is easily computed at each pixel in that region using

equation (3). The surface is assumed to be opaque, hence, the absorptivity is computed as a8 = 1 - p.
The above procedure is applied to each region in the image to provide estimates of p and cosOi at each

pixel in the entire image.

The assumption that viewed surfaces are opaque and are Lambertian is sometimes violated by the

presence of transparent objects (e.g. glass windows, lakes), or regions of specular reflection (e.g. a

polished surface). It is assumed that such regions in the imagery are detected by means other than

that presented in this paper.

4 Estimating Surface Heat Fluxes

In this section, the various heat fluxes at the surface of the object are identified and the relationship

between them is specified. A method for estimating these heat fluxes is then presented. This method

uses values of surface temperature deduced from the thermal image, and surface reflectivity and relative

orientation deduced from the visual image. Section 5 describes methods for interpreting imaged scenes

using these heat flux estimates.

Consider an elemental area on the surface of the imaged object. Assuming one-dimensional heat

flow, the heat exchange at the surface of the object is represented by figure 3. Wi is the incident

solar radiation, 0i is the angle between the direction of irradiation and the surface normal, the surface

temperature is To, and W_b_ is that portion of the irradiation that is absorbed by the surface. We.

denotes the heat convected from the surface to the air which has temperature Tamb and velocity

V, W,.,_d is the heat lost by the surface to the environment via radiation and Wcd denotes the

heat conducted from the surface into the interior of the object. Irradiation at the object surface also

includes that emanating
this absorbed irradiation

bands. The contribution

At any given instant,

surface of the object and those flowing out from the surface, we have,

W.b, = Wed + We, + W_ad

where,Wrod= 0.9 o (T: - T2mb),

W_bo = Wi cosOi ao ,

from other scene components. As discussed in section 2, the magnitude of

is small when compared to total solar irradiation absorbed in visible and IR

of the former may therefore be ignored.

applying the law of conservation of energy to the heat fluxes flowing into the

(4)
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Figure 3. Exchange of heat fluxes at the surface of the imaged object.

a denotes the Stefan-Boltzman constant, and _s denotes the solar absorptivity of the surface. The

convected heat transfer is given by

Wcv = h(T, - T,,,_b) (6)

where, h is the average convected heat transfer coefficient, and depends on the properties of the

surrounding air (e.g. velocity, viscosity, temperature, etc.), and on the geometry and the nature of the

object's surface. We note that Wrad is immediately available when T_mb is known since T_ is deduced

from the thermal image as discussed in section 2.

In order to estimate the heat flux absorbed by the surface, it is first neccesary to determine the

magnitude of the incident radiation on a horizontal surface and then compensate for the orientation

and the reflectivity of the imaged surface. One approach is to directly measure the incident solar

radiation using a pyrheliometer. Alternately, as was done in the experiments described later, an

appropriate analytical model may be used to estimate this quantity. The variation (with day of the

year and time of day) of the intensity of solar radiation incident on a horizontal surface on the ground

has been modelled by Thepchatri, et al. [22] based on the data presented by Strock and Koral [23].

The empirical model accounts for diurnal and seasonal variations. This model is used for specifying

W_. Thus, knowing cos_ and c_ as described in section 3, Wab, may be computed using from equation

(5).

The convective heat flux is obtained by using equation (6). The temperature for the object's surface

is obtained from the thermal image as described in the previous section. The ambient temperature

Tamb is known. The problem therefore lies in estimating the average convected heat transfer coefficient

h. A plethora of empirical correlations have been established for computing h for various thermal and

hydrodynamic conditions [24]. The simplifying assumption that the portion of the surface being viewed

is fiat allows the use of convecion correlations developed for external flow over fiat plates [24]. The

procedure for estimating the convected heat flux is as follows: knowing the wind velocity and the

air temperature, the Reynolds number is computed, where the characteristic length of the object is
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Figure 4. Equivalent thermal circuit of imaged surface.

assumed to be 1 meter. The value of the Reynolds number determines whether laminar or mixed

flow conditions exist. Accordingly, the appropriate correlation is used. The Nusselt number is thus

obtained and thence the convected heat transfer coefficient h. Equation (6) is now used to provide

the estimate of convected heat flux.

Having estimated the convected heat flux, the radiated heat flux, and the absorbed irradiation as

described above, the conduction heat flux is then deduced using equation (4).

5 Scene Interpretation

The estimated surface heat fluxes may be used to derive physically meaningful interpretations of the

scene. Two different methods are discussed. The first approach assumes that only a single data set

of the scene is available, and it consists of the thermal image, the visual image, and values of scene

parameters obtained at a particular instant of time. The second method assumes that a sequence of
data sets obtained at different time instants is available. The first approach is more suitable for scenes,

the contents of which change frequently, e.g., one that contains automobiles. The second approach is

suitable for scenes containing objects that are stationary over the sequence of data sets, e.g., scenes

containing only vegetation, buildings and pavements.

5.1 Analysis of a Single Multisensory Data Set

The estimated surface heat fluxes may be used to evaluate how well an object can act as a heat

source/sink. Thus a highly discriminatory feature may be extracted which is closely related to an

intrinsic physical property of the imaged object. Considering a unit area on the surface of the imaged

object, the equivalent thermal circuit for the surface is shown in figure 4. CT is the lumped thermal
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Table1

Object Thermal Capacitance

( × 10 -6 Joules/Kelvin)

Asphalt Pavement 1.95

Concrete Wall 2.03

Brick Wall 1.51

Wood(Oak) Wall 1.91
Granite 2.25

Automobile 0.18

: Normalized values of lumped thermal capacitance.

capacitance of the object and is given by

CT = DVc

where, D is the density of the object, V is the volume, and c is the specific heat. The resistances are

given by:
1 1

Roy = -_ and Rr_d = 0.9a(T_ + T2_mb)(Ts + T_mb)

From figure 4 it is clear that the conduction heat flux Wed estimated in the previous section depends

on the lumped thermal capacitance CT of the object. A relatively high value for CT implies that

the object is able to sink or source relatively large amounts of heat. An estimate of Wcd, therefore,

provides us with a relative estimate of the thermal capacitance of the object, albeit a very approximate

one. Table 1 lists values of CT of typical objects imaged in outdoor scenes. The values have been

normalized for unit volume of the object.

Note that the thermal capacitance for walls and pavements is significantly greater than that for

automobiles and hence Wed may be expected to be higher for the former regions. Plants absorb a

significant percentage of the incident solar radiation. The energy absorbed is used for photosynthesis

and also for transpiration. Only a small amount of the absorbed radiation is convected into the air.

Therefore, the estimate of the Wed will be almost as large (typically 95%) as that of the absorbed heat

flux. Thus, Wed is useful in estimating the object's ability to sink/source heat radiation, a feature

shown to be useful in discriminating between different classes of objects. However, in order to minimize

the feature's dependence on differences in absorbed heat flux, a normalized feature was defined to be
the ratio

R = Wcd/Wobs

Although the heat flux ratio, R = Wcd/Wabs , does capture a great deal of information about the

imaged object, it is not discriminatory enough to unambiguously delineate the identity of the imaged

object. Other sources of information are therefore warranted. Hence, information such as the surface

reflectivity, p, of the region which is derived from the visual image, and average region temperature

which is derived from the thermal image are also used to facilitate region labeling. Section 6 presents

experimental results of using this approach on real multisensory data.

5.2 Analysing Temporal Sequence of Multisensor Data

If a temporal sequence of multisensor data consisting of thermal imagery, visual imagery and scene

conditions is available, then it is possible to extract a more reliable estimate of the imaged object's
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Observe that the relationship between the conductedrelative ability to sink/source heat radiation.

heat flux Wed and the thermal capacitance CT of the object is given by:

dTs
Wcd= CT -d-i

A finite (backward) difference approximation to this equation may be used for estimating CT as

Cr = w_ (t2 - t,) (7)
(Ts(t2) - T,(t,))

where, tl and t2 are the time instants at which the data were acquired, Ts(tl) and T_(t2) are the cor-

responding surface temperatures, and Wed is the conducted heat flux which is assumed to be constant

during the time interval. However, Wcd does vary and an average value of (Wcd(tl) + W_a(t2))/2 is

used in equation (7).

Section 6 presents experimental results obtained by applying the above temporal analysis method

to multisensory data.

6 Experimental Results

The methods described in the previous sections were applied to real multisensory data acquired from

outdoor scenes. Calibrated remote sensing data were not available along with values of ambient scene

parameters such as wind speed and temperature. Hence, thermal and visual imagery were acquired

from a ground based imaging setup consisting of an Inframetrics infrared imaging system and a video

imaging system. An anemometer was used to measure wind speed and a digital thermometer was used

to calibrate the thermal imaging system so as to allow absolute temperature estimates as discussed

in section 2. The two methods discussed in the previous section were applied to several sets of data

which were acquired at different times of the day and during different seasons of the year.

The results obtained using one data set are presented in figures 5 through 8. Figure 5 shows the

visual image of a scene containing an automobile, buildings, asphalt pavement and vegetation. Figure

6 shows the thermal image of the same scene. The techniques described in the preceeding sections

of this paper were used to estimate the surface heat fluxes, whence the ratio R = Wcd/Wab_ was

computed at each pixel. A histogram of these values was computed for each region and the mode of

the histogram was found. This value was chosen as the representative value of R for the region. Figure

7 shows the values obtained for each region. As predicted by the discussion in section 5, automobiles

produce the lowest value of this feature, pavements and buildings produce intermediate values and

vegetation produces the highest values.

In addition to the feature R, the average region temperature, and the surface reflectivity were also

used in a decision tree classifier to label regions as building, pavement, vegetation or automobile. The

classifier used heuristic rules of the form:

IF { R e [0.2, 0.9] AND p e [0.35, 1.0] } OR { R e [-.8, -.3] } THEN label = bldng

The resultant classification is shown in figure 8.

The method of temporal analysis of the scenes was tested on data acquired at intervals of three

hours. Table 2 presents the mean and standard deviation of the value of CT estimated for different

classes of scene objects. The estimated values compare very favorably with those listed in table 1.

Except for the concrete and brick walls, the estimated values for each class are of the same order of
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Figure 7. Mode of feature R. Figure 8. Region classification.
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Object Average CT Std. Devn.

(xl0 -_ J/K) (xl0 -_ J/K)
Automobile 0.08 0.08

Concrete Wall 0.22 0.37

Brick Wall 0.37 0.38

Asphalt Pavement 1.05 0.46

Vegetation 1.5 2.7

Table 2: Values of lumped thermal capacitance estimated using the method described in section 5.2.

magnitude as listed in table 1, and are ordered in a similar manner. The walls do not compare favorably

possibly due to the wide variation in wall thickness that is difficult to account for and also due to the

unknown thermal conditions on the interior surface of the walls. In general, a significant offset may

be expected in the estimated values due to the many approximations used in the computation of the

heat flux estimates. Inspite of this limitation, it is obvious that the approach described above makes

available a very useful and meaningful method for the interpretation of multisensory data. Note also

that the value of CT is a deterministic value which is completely defined by a physical definition for a

particular class of objects. Hence, a deterministic measure of the technique's performance is available

by comparing the estimated and true values of CT. Such a measure is not available in purely statistical

interpretation techniques. This is one of the major advantages of a phenomenological approach to scene

interpretation when compared to the purely statistical approach.

7 Conclusions

A new method has been described for interpreting scenes using multisensory data. The phenomenologi-

ca] approach combines information from the different imaging modalities to derive meaningful features.

The approach is based on physical models of the energy exchange between the imaged surface and

the environment. The thermal and visual images yield estimates of surface heat fluxes which in turn

provide a measure of the relative ability of the imaged surface to source/sink heat energy. The inter-

pretation thus relies on a rough estimate of the lumped thermal capacitance of the object which has

been shown to vary widely for different classes of objects in outdoor scenes. The developed approach

was tested on real multisensory data. Due to the unavailability of a calibrated remote sensing data

and accompanying values of ambient scene conditions, the testing was performed using terrain based

imaging equipment. The approach described above may be easily applied to multisensory imagery

acquired by airborne or satellite-based sensors.
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ABSTRACT

A method of classifying multisource data
in remote sensing is presented. The pro-
posed method considers each data source as

an information source providing a body of
evidence, represents statistical evidence by
interval-valued probabilities, and uses
Dempster's rule to integrate information
based on multiple data sources.

The method is applied to the problems of
ground-cover classification of multispectrai
data combined with digital terrain data such
as elevation, slope, and aspect. Then this
method is applied to simulated 201 -band
High Resolution Imaging Spectrometer
(HIRIS) data by dividing the dimensionally
huge data source into smaller and more

manageable pieces based on the global sta-
tistical correlation information. It produces
higher classification accuracy than the
Maximum Likelihood (ML) classification
method when the Hughes phenomenon is
apparent.

1 INTRODUCTION

The importance of utilizing multisource
data in ground-cover classification lies in

the fact that it is generally correct to as-
sume that improvements in terms of classi-
fication accuracy can be achieved at the ex-

pense of additional independent features
provided by separate sensors. However, it
should be recognized that information and
knowledge from most available data sources
in the real world are neither certain nor

complete. We refer to such a body of uncer-
tain, incomplete, and sometimes inconsis-

tent information as "evidential informa-
tion."

The objective of the current research is
to develop a mathematical framework
within which various applications can be
made with multisource data in remote

sensing and geographic information sys-
tems. The methodology described in this
paper has evolved from "evidential reason-
ing," where each data source is considered

as providing a body of evidence with a cer-
tain degree of belief. The degrees of belief
based on the body of evidence are repre-
sented by "interval-valued (IV) probabili-
ties" rather than by conventional point-
valued probabilities so that uncertainty can
be embedded in the measures.

There are three fundamental problems
in the multisource data analysis based on IV

probabilities: (1) how to represent bodies of
evidence by IV probabilities, (2) how to

combine IV probabilities to give an overall
assessment of the combined body of evi-
dence, and (3) how to make decisions based
on IV probabilities.

The paper describes a formal method of

representing statistical evidence by IV
probabilities based on the Likelihood
Principle. In order to integrate informa-
tion obtained from individual data sources,
the method presented in the paper uses

Dempster's rule for combining multiple
bodies of evidence. Although IV probabili-
ties together with Dempster's rule provide
an innovative means for the representation
and combination of evidential information,

they make the decision process rather
complicated. We need more intelligent
strategies for making decisions. This paper
also focuses on the development of decision
rules over IV probabilities.
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2 AXIOMATIC DEFINITION OF
IV PROBABILITY

Interval-valued probabilities can be
thought as a generalization of ordinary
point-valued probabilities. The endpoints of
IV probabilities are called the "upper prob-
ability" and the "lower probability."

There have been various works intro-

ducing the concepts of IV probabilities in
the areas of philosophy of science and

statistics [1][2][3][4]. Although the mathe-
matical rationales behind those approaches
are different, there are some properties of
IV probabilities which are commonly re-
quired. The axiomatic approach to IV prob-
abilities is based on those common proper-
ties, so that it can avoid conceptual ambi-
guities.

DEFINITION [5] Suppose O is a finite set of
exhaustive and mutually exclusive events.
Let 13 denote a Boolean algebra of the subsets
of O. The IV probability [L, U] is defined by
the set-theoretic functions:

L : 13--_ [0, II (2.1)

U : I] _ [0, I] (2.2)

satisfying the following properties:

I) U(A) _>C(A) _>0 for any Ae _ (2.3)

II) U(@) = L(@) = 1 (2.4)

III) U(A) + £(A) = 1 for any Ae[3 (2.5)

IV) For any A, BeJ3 and Ac_B=_3,

L(A)+L(B) < L(AuB) _<L(A)+U(B)

<_U(AuB) _<U(A)+U(B) (2.6)

Given a system of IV probabilities over i_,
the actual probability measure, P(A), of any
subset A of @ is assumed to lie in the interval

[L, U] such that

£(A) < P(A) < U(A) (2.7)

The degree of uncertainty about the actual

probability of A is represented by the width,
U(A)-L(A), of the interval. In particular,

U(A)=L(A)=P(A) when there is complete

knowledge of the probability of A. In this
case, the IV probability becomes an ordi-

nary additive probability. And L(A)+L(A)=0

when there is absolutely no knowledge of
the probability of A.

The basic probability assignment m de-

fined in Shafer's mathematical theory of
evidence[6] has the following relations with
the IV probabilities:

_A) = Z re(B) (2.8)

B_-A

re(A) = Z ('l) IA-BI L(B) for all ac@ (2.9)

B_.A

V(A) = _ m(B)
Bc_A_

(2.10)

3 REPRESENTATION OF STATISTICAL
EVIDENCE BY IV PROBABILITY

When a body of evidence is based on the
outcomes of statistical experiments known
to be governed by any probability model, it
is called "statistical evidence." One of the

basic problems for any theory of IV prob-
abilities is how to represent a given body of
statistical evidence by IV probabilities.

DEFINITION [6] An upper probability
function U is said to be "consonant" if its

focal elements are nested, i.e., if for A i_@

(i=l ..... r) such that m(Ai) > 0 for all i and

r

Zm(Ai)=l, AicA j for any i < j, where m is the
i=l

basic probability assignment of U.

Suppose the observed data in a statistical
experiment are governed by a probability
model {p0:0e 0}, where P0 is a conditional

probability density function on a sample
space X given 0. Our intuitive feeling is that
an observation xe X seems to more likely
belong to those elements of @ which assign
the greater chance to x.

Based on the above intuition along with
the consonance assumption of the upper
probability function, Shafer[6] proposed the
linear plausibility function defined as:
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_(Alx)=
max po,(x)O'eA

max P0(X)
for all A_13 and A#O (3.1)

The corresponding lower probability func-
tion is given as:

max po.(x)
eeA

L(AIx) = 1 - for all Ae 13 (3.2)
max p0(x)

aeo

In particular, when the set A is singleton,
say {O'}, the function in Eq.(3.1) gives the
relative likelihood of 8' to the most likely
clement in @.

4 DEMPSTER'S RULE FOR
COMBINING IV PROBABILITIES

Dcmpster's rule is a generalized scheme
of Bayesian inference to aggregate bodies of
evidence provided by multiple information

sources. Let m 1 and m 2 be the basic prob-

ability assignments associated respec-tively

with the belief functions Bel 1 and Bel 2

which are inferred from two entirely dis-

tinct bodies of evidence E 1 and E 2. For all A i,

Bj, andXkC@, Dempster's rule (or Dempster's

orthogonal sum) gives a new belief func-
tion denoted by

Bel= Bel l _ Bel2 (4. I)

The basic probability assignment associated
with the new belief functionis defined as:

m(Xk )=(1" f0-1 Z ml (A i)" m2(Bj)

AinBj=X k

for any Xk# _ (4.2)

where k is the measure of conflict between

Bel 1 and Bel 2 defined as:

k= Z ml (Ai)'m2(Bj) (4.3)

AinBj=O

Dempster's rule computes the basic

probability of X k, m(Xk), from the product

of ml(Ai)and m2(Bj) by considering all A i

and Bjwhosc intersection is X k. Once m is

computed for every XkCO, the belief func-

tion is obtained by the sum of m's committed

to X k and its subsets. The denominator (1-_

normalizes the result to compensate for the
measure committed to the empty set so that
the total probability mass has measure one.
Consequently, Dempster's rule discards the

conflict between E 1 and E 2 and carries their
consensus to the new belief function.

Dempster's rule is both commutative and

associative. Therefore, the order or group-
ing of evidence in combination does not
affect the result, and a sequence of infor-
mation sources can be combined either

sequentially or pairwise.

5 DECISION RULES FOR

IV PROBABILITIES [7]

Consider a classification problem where
an arbitrary pattern xe X from an unknown
class is assigned to one of n classes in O. Let

k(0il0j) be a measure of the "loss" incurred

when the decision 0 i is made and the true

pattern class is in fact 0j, where i, j = 1..... n.

Also, let {_(x) denote a decision rule that tells

which class to choose for every pattern x.
We define the "upper expected loss" and the
"lower expected loss" of making a decision

0(x)=0i as:

_i(x) = Z _'(0il0j) Ux(0j)
j=l

(5.1)

n

/*i (x) = Z _'(0il0j) Lx(0j) (5.2)
j=l

where U x and L x are respectively the upper

and the lower probabilities for x being

actually from 0j.
The "Bayes-like rule" is the one which

minimizes both the upper and the lower
expected losses, i.e.,

0(x)=0 i if _i(x)_</_(x) and l,i(x)<l,j(x )

for j=l ..... n (5.3)

A problem with the above decision rule is
that there does not always exist 0 which sat-
isfies the condition in Eq.(5.3), which can
lead to ambiguity. In such an ambiguous
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situation, one may withhold the decision
and wait for a new piece of information.
Otherwise, the ambiguity may be resolved
by resorting to the following rule, so-called
"minimum average expected loss rule":

_i(x)+ [*i(x) /_i(x)+ f*.i(x)
0(x)=0 i if -<2 2

for j=l ..... n (5.4)

As an alternative to the Bayes-like rule,

there are two other rules by which a deci-
sion is made according to individual mea-
sures of the interval, that is, either the up-

per expected loss or the lower expected loss:

(A) minimum upper expected loss rule:

O(x)=0 i if ri(x) _<t_(x) for j=l,.:., n (5.5)

(B) minimum lower expected loss rule:

0(x)=0 i if t',i(x) - (,j(x) for j=l ..... n (5.6)

Although the above two rules always pro-
duce decisions and there is no ambiguous

situation in making a decision according to
the rules, they do not utilize all of the in-
formation represented by the IV probabili-
ties. The performance of these rules are
compared with the minimum average ex-
pected loss rule in the experiments by
applying them to problems of ground-cover
classification based on remotely sensed and
geographic data.

6 EXPERIMENTAL RESULTS

The experiments have been performed
over two different image data sets. In the

experiments, the classification accuracies of
the multisource data (MSD) classification
based on the proposed method were com-

pared with those of Maximum Likelihood
(ML) classifications based on the stacked
vector approach.

Table 1 describes the set of data sources

for the first experiment. The image in this
data set consists of 256 lines by 256 columns
and covers a forestry site around the
Anderson River area of British Columbia,
Canada. Source 1 is ll-band Airborne

Multispectral Scanner (A/B MSS) data.
Sources 2 and 3 are Synthetic Aperture

Radar (SAR) imagery in Shallow mode and

Steep mode, respectively. Sources 4 through
6 provide digital terrain data.

In this experiment, 6 classes were de-
fined as listed in Table 2, and 100 pixels per
class were used for training data, which is
between 4% and 8% of the total pixels of the
classes in the test fields. The training sam-

ples are uniformly distributed over the test

Table 1. Anderson River Data Set.

Source Data Spectral Input Spectral

Index Type Region Channel Band(p.m)

1 A/B
MSS

Visible

2

Near IR

Thermal

SAR Shallow

1 .38 - .42

2 .42 - .45

3 .45 - .50

4 .50 - .55

5 .55 - .60

6 .60 - .65

3 SAR Steep

7 .65 - .69

8 .70 - .79
9 .80 - .89
1 0 .92 - 1.10

4 Topo- Elevation

5 graphic Aspect
6 Slope

11 8 - 14

XHV

XHH

LHV

LHH

XHV

XHH

LHV

LHH

Table 2. Information Classes for Test of
Anderson River Data Set.

Class Cover

Inde_ Types

1 Douglas Fir 2 (df2)
2 Douglas Fir 3 (df3)
3 DF+Other Species 2

(df+os2)

4 DF+Lodgepole Pine 2
(df+ip2)

5 Hemlock+Cedar (hc)

6 Forest Clearings (fc_
Total

Tree No. of % of
Sizes Pixels Total

31 - 40m 2246 21.72
21- 30m 1501 14.52
31 - 40m 1352 13.08

21 - 30m 1589 15.37

31 - 40m 1587 15.35
2064 19.96

0339 100.0
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fields so that they may be considered as good
representatives of the total samples.

We have observed that some of the
classes defined in Table 2 cannot be assumed

to be normally distributed in the topo-
graphic data. Thus it was decided to adopt a
nonparametric approach such as the
"Nearest Neighbor" (NN) method [8] in
computing probability measures while the
optical and radar data sources were assumed

to have Gaussian probability density func-
tions.

First, the ML classification based on the

stacked vector approach was carried out for
various sets of the data sources, adding one
source at a time to the A/B MSS data in the

order Elevation, SAR-Shallow, SAR-Steep,
Aspect, and Slope. Then the MSD classifica-
tion based on the proposed method was per-
formed using different decision rules.
Tables 3 and 4 compare the results for the
training samples and the test samples, re-
spectively. Even though the compounded
data in the ML classification were treated as

having Gaussian distributions, the ML and
the MSD methods produced similar results
for the training samples. This is not sur-
prising because the ML method uses con-

ventional additive probabilities assuming
that the knowledge concerning the actual
unknown probabilities is complete, which is
reasonable as far as the training samples
are concerned.

Table 3. Results of Classifications over

Training Samples of Anderson River Data.

Decision

Rule 1

Sources

1,4 1,2,41-4 1-5 1-6

ML g2.5C _8.67 91.67 )2.00 )2.83 )3.50

MUEL

M_ MLEL

MAEL

_9.83 92.00 92.50 )3.17 )4.32

88.67 91.17 91.3392.33 )3.63

88.50 91.00 91.6791.67 )3.5£

Comparing the performance of the three

decision rules, the minimum upper expected
loss (MUEL) rule was superior to the other

rules, the minimum lower expected loss
(MLEL) rule and the minimum average ex-
pected loss (MAEL) rule. It is not known in

general which rule is the best. Further
research is needed to determine whether

guidelines can be devised for selection of
the decision rule.

Table 4. Results of Classifications over Test

Samples of Anderson River Data.

Decision

Rule

ML

MUEL

MSD MLEL

MAEL

Sources

1 1,4 1, 2,4 1-4 1-5 1-6

74.1_ 77.77 79.13 78.9379.8081.01

- 80.613 82.39 g2.6983.0284.54

- 78.45 81.42 81.67 82.2483.65

78.21 80.95 32.0581.8883.16

In the second experiment, the proposed
method was applied to the classification of
HIRIS data by decomposing the data into
smaller pieces, i.e., subsets of spectral
bands. The data set used in this experiment
is simulated HIRIS data obtained by RSSIM
[9]. RSSIM is a simulation tool for the study
of multispectral remotely sensed images and
associated system parameters. It creates
realistic multispectral images based on de-
tailed models of the ground surface, the at-
mosphere, and the sensor. Table 5 provides
a description of the simulated HIRIS data set.

Figure 1 is a visual representation of the
global statistical correlation coefficient

matrix of the data. The image is produced by
converting the absolute values of coeffi-
cients to gray values between 0 and 255.

Based on the correlation image, the 201
bands were divided into 3 groups in such a
way that intra-correlation is maximized and
inter-correlation is minimized. Table 6 de-

scribes the multisource data set after divi-

sion. Note that the spectral regions of the
input channels in Source 3 coincide with
the water absorption bands.

With 225 training samples (a third of the
total samples) for each class, the ML classi-

fication and the MSD classification using
the minimum upper expected loss rule were
performed over the total samples for vari-
ous sets of the sources, and the results are
listed in Table 7.

The results of the ML method apparently
show effects of the Hughes phenomenon;

79



the accuracy goes down as the dimensional-
ity of the source increases while the num-
ber of training samples is fixed. In particu-
lar, the accuracy decreases by a consider-
able amount when all features are used.

Presence of the Hughes phenomenon causes
the ML method to be particularly sensitive
to a bad source, Source 3 in this case.

Meanwhile, the proposed MSD classification

method always shows robust performance
and gives consistent results.

Table 5. Description of Simulated

Name

Data Type

HIRIS Data Set.

Finney County Data Set

Z01-band HIRIS data simulated by
RSSIM

Spectral Region 0.4 - 2.4m m

Spectral 0.01ram

Resolution

Image Size 45 lines x 45 columns (2025
samples)

Information

Classes

Winter Wheat, Summer Fallow,
Unknown

Table 6. Divided Sources of HIRIS Data Set.

Source
Index

Source 1

Source 2

Input
Channels

1- 35t 107 - 1411 157 - 20
36 - 95

No. of
Features

1 115

60

Source 3 96- 106 (1.35 - 1.45p.m) 26

142 - 156 (1.81 - 1.95_tm)

Table 7. Results of Classifications over Test

Samples of Simulated HIRIS Data Set.

Sources

SI $2 $3 S1, $2 All

ML 75.75 75.60 45.83 74.56 65.14

MSD - 77.83 77.63

6 CONCLUSIONS

In this paper we have investigated how
interval-valued probabilities can be used to
represent and aggregate evidential infor-
mation obtained from various data sources.

Overall concepts of interval-valued proba-
bilities have been employed to develop a
new method of classifying multisource data
in remote sensing and geographic infor-

mation systems. The experiments demon-
strate the ability of our method to capture

1 uncertain information based on inexact and

incomplete multiple bodies of evidence. The
basic strategy of this method is to decompose

36 the relatively large size of evidence into
smaller, more manageable pieces, to assess

52 plausibilities and supports based on each

piece, and to combine the assessments by
75 Dempster's rule. In this scheme, we are able

95 to overcome the difficulty of precisely
estimating statistical parameters, and to

107 integrate statistical information as much as

possible.

141

157

201

Figure 1. Global Statistical Correlation
Coefficient Image of Simulated HIRIS Data.
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Abstract
It is generally believed that the detailed analysis of remotely sensed imagery requires the

extraction of a variety of partial image domain cues coupled with the use of a priori or

contextual information. In some cases there are fundamental limits to the variety and type of

information that may be extracted from a single image or stereo pair. However, in most cases a
sufficient variety of cues can be extracted; the major issue is in how to utilize disparate scene

cues to achieve a more complete and accurate overall scene interpretation.

The focus of this paper is to examine how estimates of three-dimensional scene structure, as

encoded in a scene disparity map, can be improved by the analysis of the original monocular

imagery. This paper describes the utilization of surface illumination information provided by the

segmentation of the monocular image into fine surface patches of nearly homogeneous intensity

to remove mismatches generated during stereo matching. These patches are used to guide a

statistical analysis of the disparity map based on the assumption that such patches correspond
closely with physical surfaces in the scene. Such a technique is quite independent of whether the

initial disparity map was generated by automated area-based or feature-based stereo matching.

We present stereo analysis results on a complex urban scene containing various man-made and

natural features. This scene contains a variety of problems including low building height with
respect to the stereo baseline, buildings and roads in complex terrain, and highly textured

buildings and terrain. We demonstrate the improvements due to monocular fusion with a set of

different region-based image segmentations. Finally, we discuss the generality of this approach

to stereo analysis and its utility in the development of general three-dimensional scene
interpretation systems.

1This research was primarily supported by the U.S. Army Engineer Topographic Laboratories under Contract
DACA72-87-C-0001 and partially supported by the Air Force Office of Scientific Research, under Grant
AFOSR-89-0199, and by the Defense Advanced Research Projects Agency, DoD, through DARPAorder 4976, and
monitored by the Air Force Avionics Laboratory Under Contract F33615-87-C-1499. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Army Engineer Topographic Laboratories, the Air Force Office of Scientific
Research, the Defense Advanced Research Projects Agency, or of the United States Government.
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1. Introduction

One common problem for systems that interpret multiple sources of sensed data is the fusion

of partial results from a variety of sources. This problem appears under many guises. For

example, given a set of different scene descriptions generated from a single image using a

variety of image analysis techniques, how does one intelligently combine such partial
information? [8]. The introduction of additional sensor types, temporal imagery, and multiple-

look imagery create dimensions along which information fusion must be performed; as such, the

complexity of the problem can increase. In some cases, increased amounts of data provide

improved information. This may not necessarily follow, however; complex systems having

different sources of error may not reinforce correct partial interpretations nor refute incorrect
ones.

Thus, the key issue is the integration of many different sources of partial information. In

computer vision (and in particular, three-dimensional scene analysis), the goal is to generate an

interpretation of the scene that is as close as possible to the actual scene imaged. Such an

interpretation can include the delineations and heights of buildings, a digital elevation model,

and the centerline and width of roads in a transportation network. Our belief is that no individual

computer vision technique can reliably provide a complete scene reconstruction. To achieve

good perlormance, we need to gather a variety of information, extracted by various processes

from the imagery, and synthesize this disparate information into a consistent model. Figure 1-1

shows a possible structure for such a scene interpretation system.

h

Model

Imagery

D

J1 F

Merging Scene Model

Operation

Intrinsic Common

images Representation

Figure 1-1: Data fusion in image analysis

From the three-dimensional scene (G) we generally acquire two-dimensional imagery

generated by a variety of different sensors. For example, a stereo pair of intensity images would

represent such an imagery. As is well understood, the problem of interpreting the two-

dimensional image (I) as a three-dimensional scene is underconstrained. In certain cases, we
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may have access to high-level knowledge about the contents of the scene, or particular objects

that can be found in the scene. Such knowledge can loosely be called a Model (M). For

example, in the case of aerial imagery we may have knowledge about the sensor resolution, the

general characteristics of the scene (airport, urban area, rural area), etc. From the representation

(I), we try to extract features that will allow us to interpret the scene {Ai}. These features are
typically segmentations, edge maps, disparity maps, intensity maps, and the like. These can be

thought of as a set of intrinsic images and primitives for intermediate and high-level
vision [l, 7]. In order to fuse the information embodied in these different "images", we need a

common framework of representations (formed by the {El}). This framework needs to allow

many, if not all, of the {Ai} features to be represented. The utilization of a common

representation makes information fusion simpler and allows the generation of an interpretation
(F), which then allows the generation of our scene model (G'). This model can be used to iterate

through the fusion process again in conjunction with extra knowledge about the scene obtained
from (M). This initial interpretation of the scene can help in the extraction of features {Ai }, the

transformation of the features in the common representation, the merging process, and even the
generation of the scene model.

Depending on the interpretation of the scene for which we are looking, we may need a varying
amount of information; in most cases, more information is generally desirable. For instance,

many techniques extract most of the necessary information for scene interpretation from a single

intensity image; such techniques are said to apply monocular analysis. It is possible to take

advantage of stereo disparity, however, to obtain more information that may be useful for

disambiguation of monocular interpretations. Techniques utilizing stereo imagery are said to

apply binocular analysis or stereo analysis. Other information such as global constraints or
world models can be useful for further interpretation and disambiguation, but we believe that

stereo analysis is a necessary step towards a coherent interpretation of the scene.

In this paper we describe a technique to merge information extracted from aerial imagery using

a common region-based representation and show how disparate scene cues can be integrated to

achieve a more complete and accurate overall scene interpretation. In Section 2 we describe

techniques to improve the accuracy of a stereo disparity map using a single segmentation of the

left intensity image of a stereo pair. Thus, we are able to recover from mismatches generated
during stereo matching by re-utilizing the intensity image that was originally used in the

matching process. In Section 3 we discuss some experimental results on disparity refinement

and describe techniques that allow for the integration of additional scene segmentations to

provide for a more robust refinement process. Finally, in Section 4 we give some future

directions of this work in building extraction and built-up area analysis and speculate on how
these techniques could be integrated into a more general three-dimensional scene interpretation
system.

2. One approach to information fusion

In our research we utilize scene domain cues derived from monocular analysis and stereo

analysis of left/right stereo image pairs. In the case of monocular analysis, one source of
information is a region based segmentation of the left or right image. In the case of stereo

analysis, our cues are primarily disparity maps derived from area-based and feature-based stereo
matching algorithms. These image-based cues are different manifestations of man-made

structures and terrain surfaces in the scene. In the case of three-dimensional reconstruction, we

can make the assumption that the scene is composed of surfaces whose information content is

primarily in terms of surface orientation and radiometry. Under these assumptions, we will see

how estimates of three-dimensional scene structure (as encoded in a scene disparity map) can be
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improved by the analysis of the original monocular imagery.

We have two sources of information that can be viewed as different representations of the
physical surfaces found in the scene: disparity maps resulting from different stereo matchers

providing the heights of the surfaces in the scene and the initial intensity images representing the

radiometric properties of the surfaces in the scene. Figures 2-1 and 2-2 show an example of

"initial" data used for these data fusion experiments. Figure 2-1 is a high resolution aerial image

containing a variety of buildings wilh comple,x shapes, typical of an industrial area. Figure 2-2 is

a disparity map derived using a feature-based stereo matching algorithm. These images are two

of the many possible intrinsic images, {Ai}, in our general framework. It is important to note
that, as in the intrinsic image paradigm, these two sources of information are "registered". That

is, there is a pixel-by-pixel correspondence between points in the intensity image and points in

the disparity map. In some many cases one issue complicating the use of multi-source

infonnation is the accurate registration or correspondence between the information sources
themselves.

Figure 2-1:DC38008 industrial

left intensity image

Figure 2-2:s2 left disparity map

An intensity image, subject to sampling and digitization errors+ poses difficulties for

monocular analysis techniques such as segmentation. On the other hand, most stereo matching
algorithms are fooled by different variations in the stereo pairs, which cause mismatches in the

disparity maps. The mismatches in disparity maps primarily result from geometric and

radiometric differences in the left and right images, rather than local digitization or sampling

errors in the intensity images. Thus, it is possible to use information from the intensity images to
reduce the number of mismatches introduced by stereo matching processes.

2.1. Region based interpretation
Our approach utilizes surface illumination intormalion, provided by the segmentalion of the

monocular images into fine surface patches of nearly homogeneous intensity, to remove

mismatches generated during stereo matching. First, we segment the intensity image into

uniform intensity regions. These regions correspond to approximately planar surfaces in the

image. We assume that the orientation and surface material are the primary factors for the
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radiometry of the image. Under these assumptions, uniform image radiometry is produced by a
planar surface, of a certain orientation and material, in the scene.

These surfaces should have continuous linear disparity values (i.e., the disparity values of

these regions are represented by continuous linear functions). Since the disparity map contains

some noise, however, most of the regions segmented in the intensity image have disparity

functions that are neither linear nor continuous. Ideally, we would like to approximate the actual
disparity functions over the uniform intensity regions by the appropriate linear functions.

The problem of approximating a surface in three-dimensional space to a reasonable planar
surface is a difficult one; we approximate such surfaces by horizontal surfaces. Then, the

disparity values for each region will be the same for each pixel, and the problem is reduced to the

selection of the best value for the heights of these surfaces. The general problem is that of
locating of the surface which satisfies the equation

ax+by+cz+d--0

Given (x,y), we should be able to obtain

z = (-ax-by-d)/c

We assume here that z'= -d'/c' only. Then the problem is to find (-d'/c') that best fits the surface
so that

ax+by+c*(-d'/c')+d-=O

or to find z' so that z-z' would have a minimal value over the region (this can be the weighted
mean of the z distribution or the most 'representative' value of the z distribution). In other

words, we need only select a single disparity value for each region. Since we are using an over-
segmentation of the image, a piecewise planar disparity map gives a good approximation of the

relief in the scene. Furthermore, since we are interested in building extraction in aerial images,
this approximation will be adequate.

This region-based interpretation has been developed for two different applications. We show

how this approach can support information fusion from different segmentations and well as

across multiple disparity estimates based upon a local decision making evaluation. In Section
3.1 we describe how improved disparity maps may be obtained by correcting the mismatches

produced by stereo matchers and by refining the disparity discontinuities. In Section 3.2 we will

extract buildings from the scene using the height information in these disparity maps.

2.2. Intensity Segmentation Techniques

The general scene segmentation problem is, of course, a very difficult one and has a long

history in image processing and computer vision. There are no universal segmentation

techniques that work well across a variety of imagery and tasks. Such low level algorithms
typically differ in their approaches; they may utilize intensity-based, area-based, or edge-based

techniques. Some systems combine these techniques into hybrid algorithms. We have

concentrated on those segmentation methods that produce (nearly) uniform intensity regions

because we wish to detect those image regions that correspond to oriented surface patches in the

scene. We utilize a region segmentation algorithm based upon the histogram splitting
paradigm [6] and a region growing algorithm [9] which takes into account edge strength and

shape criteria [4]. Interestingly, while neither of these methods give completely satisfactory

segmentation results, they provide good over-segmentations that rarely merge object/background

boundaries. Both techniques will also provide different segmentations based upon modification
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of asmall setof parameters.In ourexperimentswegeneratedthreescenesegmentations:two by
using different parametersfor histogramselection,and one by using regiongrowing. These
segmentationsprovidedthe basisfor our work in intensity/disparityfusion, the goal of which
wasto producean improvedthree-dimensionalsceneinterpretation.

Figures2-4 - 2-6showexamplesof thesesegmentationson theDC38008industrial left intensity
image. Weran theexperimentsonsmoothedimages(Figure2-3) to removeintensitynoise.

2.2.1.Machineseg
One of the major difficulties with region growing techniquesin complex scenesis the

difficulty in determining automatic stopping conditions for the merging proceedure.
MACHINESEG[4] is a region growing system that tries to preserve edges between regions and

stops the growing procedure when certain shape or spectral criteria are not satisfied inside the

region. It adds a decision proceedure to evaluate the effect of the next merge operation and

either allows the merge to proceed or to be rejected. In the case of disparity map refinement, we

want the regions to be sufficiently uniform that they could be treated as planar (or at least "soft")

surfaces. We also limited the size of the generated regions so that very small regions could not
be generated, as these could be considered noise or non-representative regions. As can be seen

in Figure 2-4, since we are not considering the small region, our segmentation is not a complete

partition of the image; it does, however, obtain most of the representative surfaces in the image.

Figure 2-3: Nagao filtered left

image tbr DC38008

Figure 2-4: MACHINESEG segmentation

on DC38008

2.2.2. Colorseg

This histogram splitting technique is based on the extraction of regions with limited intensity

ranges (in other words, region of approximately uniform intensities). The technique searches for

the peaks in the histogram of the image and segments the regions whose intensity values fall in

windows around these peaks. The regions are then removed from the image and the process
continues until all the pixels in the image have been removed. This process results in a

segmentation composed of connected regions, each having an intensity range less than a certain

threshold. This technique does not guarantee preservation of the edges (in particular, small

edges) but it may ignore local noise with strong edges that other techniques will classify as
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regions. As in the previous technique, we removed very small regions (less than 20 pixels) that
could be considered as noise, for further processing.

In our experiments, we generated different segmentations with different segmentation

techniques. For instance, using the colorseg technique we generated two segmentations of the

images, one with "uniformity" defined as a maximum of 10 intensity levels inside the region (to

tolerate sensor noise and allow for imperfect planar surfaces) and another with "uniformity"
defined as a maximum of 20 intensity levels (to tolerate more noise). An estimation of the noise

or the average intensity range for the surfaces in the image is a delicate problem, and the use of

different segmentations to estimate the intensity range inside the regions does not necessarily
increase the reliability of the process. It is thus important that we obtain different segmentations
of the scene that are not consistent, such as those in Figures 2-5 and 2-6. The fusion of these

data may overcome some of the inherent problems of a single segmentation since they provide

different local evaluation contexts for disparity estimates in the scene. In the following sections
we show how we can e information usin intensit, mentations.

Figure 2-5: COLORSEG segmentation

with l0 intensity levels

sensitivity for DC38008

Figure 2-6: COLORSEG segmentation

with 20 intensity levels

sensitivity for DC38008

2.3. Disparity map results

Our initial height information for the industrial scene was derived using two different stereo

matching algorithms. Given these sets of height information, which may or may not be reliable
or unique, it becomes necessary to use a data fusion process in order to maximize the amount of

useful information gained from these sets of height estimates.

We used 2 different matching techniques, one area_based (s I) and the other feature_based

($2). Sl uses the method of differences technique on neighborhoods of the image in hierarchical

fashion [3, 5]. $2 performs a hierarchical matching of epipolar intensity scanlines in the left and

right image [2]. The results of these stereo matching algorithms are different: s I gives us a dense
disparity map (i.e., a map containing a disparity value for each pixel in the image), while $2

gives us a sparse disparity map (i.e., a map containing a disparity value for those pixels
corresponding to peaks or valleys in the intensity images).

ORIGINAL PAGE IS
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Since we used uniform segmented regions that we assumed to be horizontal planes, a logical

interpolation method for the sparse $2 disparity map is step interpolation. This produces a dense
disparity map consisting of regions with uniform disparity values, which may be more easily

integrated with a dense map produced by Sl. Our fusion mechanism will have to correct

mismatches in the Sl or $2 disparity maps and then choose the better unique disparity value for

each pixel in the scene. It will have to merge very different disparity information, such as that

shown in Figures 3-2 and 3-1, the two left disparity maps for the DC38008 scene.

3. Fusion Experiments
After different intensity segmentations and different disparity results were obtained, we

applied a very simple fusion technique and developed a few experiments for the two applications
under consideration. Most of the experiments have been performed for the disparity refinement

process, but the results have been used for the building extraction process as well.

Figure 3-1: sI left disparity
result for DC38008

Figure 3-2:s2 left disparity
result for DC38008

3.1. Disparity refinement

In order to refine the disparity maps (i.e., to
discontinuities and obtain the best height estimate

approaches have been explored:

• Disparity refinement using one segmentation

• Disparity refinement using several segmentations

• Disparity refinement using one segmentation and several disparity maps

• Disparity refinement using several segmentations and several disparity maps

remove mismatches, improve disparity

for each point in the scene), several

3.1.1. Simple disparity refinement

In this first approach, a histogram is constructed for each segmentation region. The values of

each histogram are the disparity values in each region. The most representative value of each
histogram is then selected. In our case, this value was simply that of the highest peak in the

histogram. We chose this value for two reasons. The step-interpolated $2 disparity maps result
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in disparity histograms having only a few values, which correspond to real height values or

matching noise. If the matching is reasonably robust, the noise will introduce local maxima in

the histogram that will be smaller in magnitude than the best height estimate. Further, a typical
region histogram for an s2 disparity map exhibits one or two large peaks and a few noise peaks

that influence the average value of the histogram, making it less reliable as a representative
value.

For non-horizontal regions and S l results, the average disparity may suffice for a reasonable

measure of the height of the region. A confidence score can be generated for these disparity

values based on the characteristics of the histograms (and, conceivably, on the type of disparity

map used as well as the nature of the region histograms). Finally, this disparity value is assigned

to the entire region, under the assumption that it will be a better estimate of the height for the
whole region. In most cases, this removes a large number of the mismatches, but whenever our

initial assumptions about scene radiometry are not valid, our height estimates may differ from

the correct height value.

We implemented this approach for each segmentation and disparity map and generated new

disparity maps that were based on the initial intensity regions and disparity values. The pixels

that were not considered during the segmentation were removed from these new disparity maps.

Figures 3-3 and 3-4 show the results of the disparity improvement process for the different

segmentations using the s2 disparity map, and Figures 3-5 and 3-6 show the results of the
disparity improvement process for the s I disparity map.

Figure 3-3:$2 left disparity Figure 3-4:S2 left disparity
result for DC38008 result for DC38008

improved using SEG10 improved using SEG20

It is worth noting that a common methodology is utilized among all of the approaches

described in this section. A set of attributes is computed for each region in each segmentation.

Among these attributes are the statistics for the disparity values inside a region, the best disparity
value, and a confidence score for this value. This allows the computation to proceed at a

symbolic level on a region-by-region basis.
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Figure 3-5: Sl left disparity
result tbr DC38008

improved using SEGIO

Figure 3-6:S1 left disparity
result for DC38008

improved using SEG20

Figure 3-7: si left disparity
result for DC38008

improved using the merging
of SEGIO and SEG20

Figure 3-8:s2 left disparity
result for DC38008

improved using the merging
of SEG 10 and SEG20

3.1.2. Multi-segmentation disparity refinement

In the second approach, we can merge different height estimates, given different intensity

segmentations(SEGlO, SEG20) and then merging the results across the different segmentations.

We refine the disparity estimate for each pixel by locating the intensity region to which it
belongs, for each of the image segmentations. This list of regions can then be searched to obtain

the disparity estimate attribute (computed for a given disparity map) as well as a confidence
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score for this estimate. The confidence score is then used to select the best disparity value,

which is then assigned to the pixel. Currently a simple decision is made to select the disparity
value having the highest confidence score.

An attempt is made to maximize the score for each pixel in the entire image. This is done by

selecting a disparity value in all of the regions resulting from the union of the segmentations. In
other words, the segmentations were merged and the best height value was selected for each of

these regions, by utilizing the confidence scores computed for each region. The scoring method
currently in use takes into account information about the nature of the segmentation used.

In particular, higher confidences can be assigned to sufficiently large regions in a constrained

segmentation such as SEGI0 than to the equivalent regions in SEG20. Information of this nature

must be incorporated in the confidence function for each segmentation region.

Figures 3-8 and 3-7 show the results of merging the SEGI0 and the SEG20 segmentations for the

$2 and the Sl disparity maps, respectively. Depending on the confidence scores of the disparity

values selected for each segmentation, we were able to obtain improved disparity estimates tor

some of the regions. Comparing these results to Figures 3-3 and 3-4, disparity maps obtained
with the simple method, we observe some of the failings of both approaches. The initial

segmentations, in some cases, are under-segmented instead of over-segmented, resulting in the

grouping of regions that should have been assigned different height estimates. Another factor is

the confidence evaluation function for the regions of the segmentation, which only takes simple
properties of the disparity histograms of each region into account.

3.1.3. Multi-Disparity Disparity Refinement

In this approach, several different disparity maps are merged using a single segmentation,

looking for consistent areas across disparity maps. This approach is similar to the simple

disparity improvement approach, except that we now attempt to select the best disparity value

based on a set of differing confidence scores. The score established for each disparity map at

each pixel should be dependent on the stereo matching algorithm used to generate the map, and

should also take into account the nature of the possible mismatches resulting from each stereo
matching technique.

The major problem with all of the refinement approaches discussed in this paper is the

development of a reasonable confidence evaluation function for each set of data. Currently,
confidence is evaluated by a scoring function that utilizes the standard deviation and the

disparity range of the histogram for each region, as well as the size of the region. Ideally, this
scoring function would also take into account the nature of the disparity map. As an initial

experiment, we defined a similar scoring function for each disparity map and checked for

disparity consistency across segmentation regions. In Figure 3-9, the areas where disparity

values differ between S l and S2 are marked in black, as we do not use any score difference
information to select the most probable height value at this stage.

3.1.4. General Disparity Refinement

For the general case we can merge the results of different disparity maps and different
segmentations and look Jbr consistency across the results. The approach is similar to the multi-

segmentation method; however, we should be able to add additional height hypotheses according
to the different segmentations.

Again, the processes can be decomposed into two stages. The first stage will gather the
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information and convert it into a common representation (i.e., region attributes). As an example,

for each segmentation we should obtain a list of height estimates with scores associated with

each of the different disparity maps we can use (sl and s2). The second stage will attempt to
merge this information by selecting the "correct" value from the available information, by

comparing scores based on the nature and quality of the different pieces of information. If we

can precisely evaluate the quality or confidence in the information, we should be able to

maximize the amount of accurate data we merge from our different information sources.

There are still many experiments that have yet to be performed. In particular, experimentation

needs to be done on merging the two different disparity values for the three different

segmentations.

Figure 3-9: s l left disparity

and s2 left disparity
merged using YAK

3.2. Building extraction

This second application of information fusion is an attempt to validate this region-based
approach for scene interpretation. Using the previously described methods, we can obtain an

estimate of the height of each of the composite regions in each segmentation. According to our

representation of the scene, buildings are composed of a single intensity region or a group of

intensity regions, and, in general, are higher than their surroundings. Therefore, regions

representing parts of a building should be higher than their neighboring regions.

For each region, a list of its neighboring regions is constructed, and the disparity values for

each of these regions are obtained. Then, a weighted histogram is computed that takes into

account shared boundary length and disparity information. This weighted score is then

compared with the height of the region to label the region as building structure or background
terrain. This building extraction process can use either the initial disparity map or the refined

disparity map.

A refinement process is used to group neighboring regions with the same height in order to
obtain an intermediate segmentation containing fewer (and larger) consistent regions. This
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grouping procedure merges connected regions having the same height to form a single region.

This allows the building extraction process to use larger, and hopefully more consistent, disparity

regions as a basis for the neighborhood disparity analysis. The quality of this analysis is again

dependent on the accuracy of the disparity estimate, as in the previous fusion process.

Figure 3-10 shows the result of such an analysis. The white regions correspond to sections of
buildings. The building extraction, as done by hand, is in Figure 3-1 1.

Figure 3-10: Building regions for
DC38008 extracted

using the merging
of SEG10 and SEG20

Figure 3-11: Building regions for
DC38008 extracted

manually

The problem can be described as the use of "early" or "initial" information for which we do not

have any confidence measures to construct a model. To perform this task, we must gather
confidence about this information as computation proceeds in order to construct a three-

dimensional interpretation of the scene. The building extraction process described here

illustrates one facet of scene interpretation that can be performed within this framework.

4. Conclusions

We have described a set of fusion processes that allow us to improve the quality of disparity

maps, and we have demonstrated the use of information fusion to improve disparity map
analysis. We described a building extraction approach that utilized the fusion technique. The

major feature of the information fusion technique described here is the definition of a common

frame for information fusion. The representation framework (an intensity segmentation) can be

used in conjunction with different types of intrinsic images. The approach developed here treats
homogeneous intensity regions as surfaces, which allows three-dimensional information to be

extracted readily.

Many research issues remain to be explored. The new disparity maps generated by the

information fusion process contain regions which each have only one disparity value. In many

cases, these unique values are not the best possible disparity estimates for the regions, and a
refinement process may need to be invoked to correct these estimates. One approach might be to
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use the new disparity map itself as input to a verification process which could refine disparity

estimates for each pixel or for those regions with low confidence scores.

Other sources of information could be utilized at the refinement stage to further enhance the

disparity map. One promising approach would be the use of left/right consistency, such as

left/right matching of low confidence regions or local correlation for these regions. Again, it
would be important to use as much information as possible, while conservatively adjusting or

refining data based on its confidence scores. In the ideal situation, no additional information

would refine the disparity estimates; it would merely verify the truth of the disparity map.

Many improvements can be obtained by the use of better segmentations and scoring functions,

and by addressing the assumption that only flat horizontal surfaces are responsible for the

imaged radiometry and by using a more sophisticated surface model such as non-horizontal

planar surfaces or quadratic surfaces. Finally, it seems feasible that multispectral data could be
integrated by similar techniques. The information fusion approaches described here provide a

means for data integration that may prove useful in other aspects of scene interpretation.
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Abstract
The extraction of buildings from aerial imagery is a complex problem for automated computer

vision. It requires locating regions in a scene that possess properties distinguishing them as man-

made objects as opposed to naturally occurring terrain features. The building extraction process

requires techniques that exploit knowledge about the structure of man-made objects. Techniques

do exist that take advantage of this knowledge; various methods use edge-line analysis, shadow

analysis, and stereo imagery analysis to produce building hypotheses. It is reasonable, however,
to assume that no single detection method will correctly delineate or verify buildings in every

scene. As an example, a feature extraction system that relies on analysis of cast shadows to

predict building locations is likely to fail in cases where the sun is directly above the scene.

It seems clear that a cooperative-methods paradigm is useful in approaching the building

extraction problem. Using this paradigm, each extraction technique provides information which

can then be added or assimilated into an overall interpretation of the scene. Thus, our research
focus is to explore the development of a computer vision system that integrates the results of

various scene analysis techniques into an accurate and robust interpretation of the underlying
three-dimensional scene.

This paper describes preliminary research on the problem of building hypothesis fusion in

aerial imagery. Building extraction techniques are briefly surveyed, including four building

extraction, verification, and clustering systems that form the basis for the work described here.

A method for fusing the symbolic data generated by these systems is described, and applied to

monocular image and stereo image data sets. Evaluation methods for the fusion results are
described, and the fusion results are analyzed using these methods.

IThis research was primarily sponsored by the U.S. Army Engineer Topographic Laboratories under Contract
DACA72-87-C-0001 and partially supported by the Defense Advanced Research Projects Agency, DoD, through
DARPAorder 4976, and monitored by the Air Force Avionics Laboratory Under Contract F33615-87-C-1499. The
views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. Army Engineering Topographic
Laboratories, or the Defense Advanced Research Projects Agency, or of the United States Government.
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1. Introduction

In the cooperative-methods paradigm it is assumed that no single method can provide a

complete set of building hypotheses for a scene. However, each method may provide a subset of
the information necessary to produce a more meaningful interpretation of the scene. For

instance, a shadow-based method might provide unique information in situations where ground

and roof intensity are similar. An intensity-based method can provide boundary information in
instances where shadows were weak or nonexistent, or in situations where structure height was

sufficiently low that stereo disparity analysis would not provide reliable information. The

implicit assumption behind this paradigm is that the symbolic interpretations produced by each

of these techniques can be integrated into a more meaningful collection of building hypotheses.

It is reasonable to expect that there will be complications in fusing real monocular data. In the

best case, the building hypotheses will not only be accurate, but complementary. It is just as

likely, however, that some building hypotheses may be unique. Further, it is rare that building
hypotheses are always accurate, or even mutually supportive of one another. For a cooperative-

methods data fusion system to be successful, it must address the problems of redundant and

conflicting data.

2. Building extraction techniques

At the Digital Mapping Laboratory, we have developed several techniques for the extraction of

man-made objects from aerial imagery. The goal of many of these techniques is to organize the

image into manageable parts for further processing, by using external knowledge to organize

these parts into regions.

For the experiments described in this paper, a set of four monocular building detection and

evaluation systems were used. Three of these were shadow-based systems; the fourth was line-
corner based. The shadow based systems are described more fully by Irvin and McKeown [5],

and the line-corner system is described by Aviad, McKeown, and Hsieh [2]. A brief description
of each of the four detection and evaluation systems follows.

BABE (Builtup Area Building Extraction) is a building detection system based on a line-corner

analysis method. BABE starts with intensity edges for an image, and examines the proximity and

angles between edges to produce comers. To recover the structures represented by the corners,
BABE constructs chains of corners such that the direction of rotation along a chain is either

clockwise or counterclockwise, but not both. Since these chains may not necessarily form closed

segmentations, BABE generates building hypotheses by forming boxes out of the individual lines

that comprise a chain. These boxes are then evaluated in terms of size and line intensity
constraints, and the best boxes for each chain are kept, subject to shadow intensity

constraints [4l, [7].

SHADE (SHAdow DEtection) is a building detection system based on a shadow analysis

method. SHADE uses the shadow intensity computed by BABE as a threshold for an image.

Connected region extraction techniques are applied to produce segmentations of those regions
with intensities below the threshold, i.e., the shadow regions. SHADE then examines the edges

comprising shadow regions, and keeps those edges that are adjacent to the buildings casting the

shadows. These edges are then broken into nearly straight line segments by the use of an

imperfect sequence finder [1]. Those line segments that form nearly right-angled comers are

joined, and the corners that are concave with respect to the sun are extended into parallelograms,

SHADE's final building hypotheses.
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SHAVE (SHAdow VErification) is a system for verification of building hypotheses by shadow

analysis. SHAVE takes as input a set of building hypotheses, an associated image, and a shadow

threshold produced by BABE. SHAVE begins by determining which sides of the hypothesized

building boxes could possibly cast shadows, given the sun illumination angle, and then performs

a walk away from the sun illumination angle for every pixel along a building/shadow edge to

delineate the shadow. The edge is then scored based on a measure of the variance of the length

of the shadow walks for that edge. These scores can then be examined to estimate the likelihood

that a building hypothesis corresponds to a building, based on the extent to which it casts
shadows.

GROUPER is a system designed to cluster, or group, fragmented building hypotheses, by

examining their relationships to possible building/shadow edges. GROUPER starts with a set of

hypotheses and the building/shadow edges produced by BABE. GROUPER back-projects the

endpoints of a building/shadow edge towards the sun along the sun illumination angle, and then

connects these projected endpoints to form a region of interest in which buildings might occur.

GROUPER intersects each building hypothesis with these regions of interest. If the degree of

overlap is sufficiently high (the criteria is currently 75% overlap), then the hypothesis is assumed
to be a part of the structure which is casting the building/shadow edge. All hypotheses that

intersect a single region of interest are grouped together to form a single building cluster.

There are many other interesting building detection and extraction techniques. We briefly

mention some recently developed methods, to illustrate the variety of techniques that produce

building hypothesis information. Although this by no means constitutes a comprehensive survey

of building detection techniques, it provides some examples of the methods used to generate

hypotheses for a scene, as well as examples of the types of data that may eventually be integrated
into a cooperative-methods building analysis scheme.

Mohan and Nevatia [6] described a method by which simple image tokens such as lines or

edges could be clustered into more complex geometric features consisting of parallelopipeds.

Huertas and Nevatia [4] described a method for detecting buildings in aerial images. Their

method detected lines and comers in an image and constructed chains of these to form building
hypotheses which were then subject to shadow verification.

Fua and Hanson [3] described a system that used generic geometric models and noise-tolerant

geometry parsing rules to allow semantic information to interact with low-level geometric

information, producing segmentations of objects in the aerial image. Nicolin and Gabler [7]

described a system for analysis of aerial images. The system had four components: a method-

base of domain-independent processing techniques, a long-term memory containing a priori
knowledge about the problem domain, a short-term memory containing intermediate results from

the image analysis process, and a control module responsible for invocation of the various

processing techniques. Gray-level analysis was applied to a resolution pyramid of imagery to
suggest segmentation techniques, and structural analysis was performed after segmentation to

provide geometric interpretations of the image.

3. A simple hypothesis merging technique

Building hypotheses typically take the form of geometric descriptions of objects in the context

of an image. One can imagine "stacking" sets of these geometric descriptions on the image: in

the process, those regions of the image that represent man-made structure in the scene should

accumulate more building hypotheses than those regions of the image that represent natural
features in the scene. The merging technique developed here exploits this idea.
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The methodtakesasinput an arbitrary collectionof polygons. An imageis createdthat is
sufficientlylargeto containall of thepolygons,andeachpixel in this imageis initializedto zero.
Eachpolygon is scan-convertedinto the image, and each pixel touchedduring the scan is
incremented.Theresultingimagethenhasthepropertythatthevalueof eachpixel in the irnage
is thenumberof inputpolygonsthatcoverit.

Segmentationscan then begeneratedfrom this "accumulator"imageby applyingconnected
regionextractiontechniques.If the imageis thresholdedat a valueof 1(i.e, all non-zeropixels
arekept),the regionsproducedby a connectedregionextractionalgorithmwill simply be the
geometricunions of the input polygons. It is the case,however, that the image could be
thresholdedat highervalues.Wemotivatethresholdingexperimentsin Section4.4.

4. Merging multiple hypothesis sets
This section outlines the experiments performed with the scan-conversion hypothesis fusion

technique. The procedure used to apply this technique to the results of four building detection

and evaluation systems (BABE, SHADE, SHAVE, and GROUPER) is described. A technique for

quantitative evaluation of building hypotheses is described, and applied to the hypothesis fusion
results. These results are analyzed to suggest improvements to the fusion technique.

4.1. The merging technique applied to four extraction systems
There were two merging problems under consideration. The first of these was the creation of a

single hypothesis out of a collection of fragmented hypotheses believed to correspond to a single
man-made structure. This problem was addressed by applying the scan-conversion technique to

the fragmented clusters produced by GROUPER. The technique was applied to each cluster
individually, and the resulting accumulator image was thresholded at 1, and connected region

extraction techniques were applied to provide the geometric union of each cluster. These

clusters were then used as the building hypotheses produced by GROUPER.

The second problem was the fusion of each of these monocular hypothesis sets into a single set

of hypotheses for the scene. Again, the scan-conversion technique was applied. The four

hypothesis sets were scan-converted, and the resulting accumulator image was thresholded at 1.
Connected region extraction techniques were applied to produce the final segmentation for the

image.

Figure 4-1 shows a section of a suburban area in Washington, D.C. Figure 4-2 shows the
SHADE results for this scene, Figure 4-3 shows the SHAVE results, Figure 4-4 shows the

GROUPER results, and Figure 4-5 shows the BABE results. Figure 4-6 shows the fusion of these

four monocular hypothesis sets.

4.2. Evaluation of the technique

To judge the correctness of an interpretation of a scene, it is desirable to have some mechanism

for quantitatively evaluating that interpretation. One approach is to compare a given set of

hypotheses against a set that is known to be correct, and analyze the differences between the

given set of hypotheses and the correct ones. In performing evaluations of the fusion results, we
use ground-truth segmentations as the correct detection results for a scene. Ground-truth

segmentations are manually produced segmentations of the buildings in an image.
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Figure 4-1:DC37 image with ground-truth segmentation

There exist two simple criteria for measuring the degree of similarity between a building

hypothesis and a ground-truth building segmentation: the mutual area of overlap and the

difference in orientation. A correct building hypothesis and the corresponding ground-truth

segmentation region should cover roughly the same area, and should have roughly the same
alignment with respect to the image. A scoring function can be developed that incorporates

these criteria. A region matching scheme such as this, however, suffers from the fact that

multiple buildings in the scene are segmented by a single region in the hypothesis set. In these

cases, the building hypothesis will have low matching scores with each of the buildings it
contains, due to the differences in overlap area.

A simpler coverage-based global evaluation method was developed. This evaluation method

works in the following manner. H, a set of building hypotheses for an image, and G, a ground-

truth segmentation of that image, are given. The image is then scanned, pixel by pixel. For any

pixel P in the image, there are four possibilities:
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Figure 4-2:DC37 SHADE results Figure 4-3:DC37 SHAVE results

Figure 4-4:DC37 GROUPER results Figure 4-5:DC37 BABE results

1. Neither a region in H nor a region in G covers P. This is interpreted to mean that

the system producing H correctly denoted P as being part of the background, or
natural structure, of the scene.

2. No region in H covers P, but a region in G covers P. This is interpreted to mean

that the syslem producing H did not recognize P as being part of a man-made

structure in the scene. In this case, the pixel is referred to as a "false negative".

3. A region (or regions) in H cover P, but no region in G covers P. This is interpreted

to mean that the system producing H incorrectly denoted P as belonging to some

man-made structure, when it is in fact part of the scene's background. In this case,
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Figure 4-6: Monocular hypothesis fusion for DC37

the pixel is referred to as a "false positive".

4. A region (or regions) in H and a region in G both cover P. This is interpreted to

mean that the system producing H correctly denoted P as belonging to a man-made
structure in the scene.

By counting the number of pixels that fall into each of these four categories, we may obtain

measurements of the percentage of building hypotheses that were successful (and unsuccessful)

in denoting pixels as belonging to man-made structure, and the percentage of the background of

the scene that was correctly (and incorrectly) labeled as such. Further, we may use these
measurements to define a building pixel branching factor, which will represent the degree to

which a building detection system overclassifies background pixels as building pixels in the

process of generating building hypotheses. The building pixel branching factor is defined as the

number of false positive pixels divided by the number of correctly detected building pixels.
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4.3. Results and analysis

The fusion process was run on other scenes in addition to the DC37 scene: DC36A, DC36B,
and DC38, three more scenes from the Washington, D.C. area; and LAX, a scene from the Los

Angeles International Airport. The coverage-based evaluation program was then applied to

generate Tables 4-1 through 4-5. Each table gives the statistics for a single scene. The first
column represents a building extraction system. The next two columns give the percentage of

building and background terrain correctly identified as such. The fourth and fifth columns show
incorrect identification percentages for buildings and terrain. The next two columns give the

breakdown (in percentages) of incorrect pixels in terms of false positives and false negatives.

The last column gives the building pixel branching factor.

Evaluation results for the fusion process on DC37

System

SHADE

% Bid

Detected

37.5

% Bkgd
Detected

98.2

% Bid

Missed

62.5

% Bkgd
Missed

1.8

% False

Pos.

15.0

% False

Neg.

85.0

73.2

Br

Factor

0.294

0.408SHAVE 47.2 96.8 52.8 3.2 26.8

GROUPER 48.7 95.8 51.3 4.2 32.6 67.4 0.508

BABE 58.9 97.2 41.1 2.8 28.5 71.5 0.278

FUSION 77.7 92.0 22.3 8.0 68.0 32.0 0.611

99 regions in ground truth

Table 4-1: Evaluation statistics for DC37 hypothesis fusion

Evaluation results for the fusion process on DC36A

System

SHADE

SHAVE

GROUPER

BABE

% Bid
Detected

53.8

63.6

58.0

51.0

% Bkgd
Detected

97.0

96.2

95.8

97.9

% Bld

Missed

46.2

36.4

42.0

49.0

% Bkgd
Missed

3.0

3.8

4.2

2.1

% False

Pos.

30.7

41.8

40.6

22.1

% False

Neg.

69.3

58.2

59.4

77.9

Br

Factor

0.381

0.411

0.495

0.273

FUSION 80.9 91.9 19.1 8.1 74.3 25.7 0.682

51 regions in ground truth

Table 4-2: Evaluation statistics for DC36A hypothesis fusion

We note that the quantitative results generated by the new evaluation method accurately reflect

the visual quality of the set of building hypotheses. Further, the building pixel branching factor

provides a rough estimate of the amount of noise generated in the fusion process. Judging by
these measures, we note that the final results of the hypothesis fusion process significantly

improve the detection of buildings in a scene. In all of the scenes, the detection percentage for
the final fusion is greater than the same percentage for any of the individual extraction system

hypotheses, although the building pixel branching factor also increases due to the accumulation
of delineation errors from the various input hypotheses.
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Evaluation results for the fusion process on DC36B

System % Bid % Bkgd % Bid % Bkgd % False % False Br

Detected Detected Missed Missed Pos. Neg. Factor

SHADE 29.8 93.8 70.2 6.2 46.3 53.7 2.034

SHAVE 28.4 96.7 71.6 3.3 31.3 69.7 1.146

GROUPER 10.3 96.8 89.7 3.2 25.9 74.1 3.027

BABE 9.9 98.8 90.1 1.2 11.3 88.7 1.159

FUSION 49.8 89.2 50.2 10.8 67.8 32.2 2.126

133 regions in ground truth

Table 4-3: Evaluation statistics for DC36B hypothesis fusion

Evaluation results for the fusion process on DC38

System % Bid % Bkgd % Bid % Bkgd % False % False Br

Detected Detected Missed Missed Pos. Neg. Factor

SHADE 51.3 97.4 48.7 2.6 13.2 86.8 0.144

SHAVE 43.1 95.3 56.9 4.7 19.1 80.9 0.311

GROUPER 54.6 95.8 45.4 4.2 21.0 79.0 0.221

BABE 44.7 96.0 55.3 4.0 17.3 82.7 0.260

FUSION 74.7 90.6 25.3 9.4 51.5 48.5 0.360

53 regions in ground truth

Table 4-4: Evaluation statistics for DC38 hypothesis fusion

Evaluation results for the fusion process on LAX

System % Bid % Bkgd % Bid % False Br

Detected Detected Missed Neg. Factor

SHADE 34.4 99.0 65.6 89.9 0.213

SHAVE 54.1 94.9 45.9 56.4 0.655

GROUPER 46.0 98.5 54.0 83.5 0.232

BABE 63.3 98.8 36.7 81.7 0.130

% Bkgd % False
Missed Pos.

1.0 10.1

5.1 43.6

1.5 16.5

1.2 18.3

7.1 65.0FUSION 73.0 92.9 27.0 35.0 0.687

26 regions in ground truth

Table 4-5: Evaluation statistics for LAX hypothesis fusion

It is worth noting that the results for the DC36B scene (Table 4-3) are substantially worse than
those of the other scenes. This is in large part due to the fact that the DC36B scene has a low

dynamic range of intensities, and the component systems used for these fusion experiments are

inherently intensity-based. The building pixel branching factors reflect the poor performance of
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the componentsystems:in GROUPER's case, over 3 pixels are incorrectly hypothesized as

building pixels for every correct building pixei. The fusion process, however, improved the

building detection percentage noticeably over the percentages of the component systems.

We also note that several difficulties are attributable to performance deficiencies in the

systems producing the original building hypotheses. The shadow-based detection and evaluation

systems, SHADE and SHAVE, both use a threshold to generate "shadow regions" in an image.

This threshold is generated automatically by BABE, a line-comer based detection system. In
some cases, the threshold is too low, and the resulting shadow regions are incomplete, which

results in fewer hypothesized buildings.

GROUPER, the shadow-based hypothesis clustering system, clusters fragmented hypotheses by

lk_mling a region (based on shadow-building edges) in which building structure is expected to

occur. This region is typically larger than the true building creating the shadow-building edge,

and incorrect fragments sometimes fall within this region and are grouped with correct

fragments. The resulting groups tend to be larger than the true buildings, and thus produce a fair

number of false positive pixels.

SHAVE scores a set of hypotheses based on the extent to which they cast shadows, and then

selects the top fifteen percent of these as "good" building hypotheses. In some cases, buildings
whose scores fell in the top fifteen percent actually had relatively low absolute scores. This

resulted in the inclusion of incorrect hypotheses in the final merger.

SIIADE uses an imperfect sequence finder to locate corners in the noisy shadow-building edges

produced by thresholding. The sequence finder uses a threshold value to determine the amount
of noise that will be ignored when searching for comers. In some situations, the true building

corners are sufficiently small that the sequence finder regards them as noise, and as a result, the

final building hypotheses can either be erroneous or incomplete.

4.4. Thresholding the accumulator image

As part of the scan-conversion fusion process, an accumulator image is produced which

represents the "building density" of the scene. More precisely, each pixel in the image has a
value, which is the number of hypotheses that overlapped the pixel. Pixels with higher values

represent areas of the image that have higher probability of being contained in a man-made
structure. Theoretically, thresholding this image at higher values and then applying connected

region extraction techniques would produce sets of hypotheses containing fewer false positives,
and these hypotheses would only represent those areas that had a high probability of

corresponding to structure in the scene.

To test this idea, the accumulator images for each of the six scenes were thresholded at values

of 2, 3, and 4, since four systems were used to produce the final hypothesis fusion. Connected

region extraction techniques were then applied to these thresholded images to produce new

hypothesis segmentations. The new evaluation method was then applied to these new

hypotheses.

In each of the scenes, increasing the threshold from its default value of i to a value of 2 causes

a reduction of roughly 20 percent in the number of correctly detected building pixels. This

suggests that a fair number of hypothesized building pixels are unique; i.e., several pixels can

only be correctly identified as building pixels by one of the detection methods. Another
interesting observation is that the building pixel branching factor roughly doubles every time the
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thresholdis decremented.Theseobservations suggest that thresholding alone may eliminate

unique information produced by the individual detection systems, and that more work will need
to be done to limit the number of false positives (and erroneous delineations) produced by each

system, and by the final fusion as a whole.

5. Conclusions

This paper has described a simple method for fusing sets of monocular building hypotheses for

aerial imagery. Scan-conversion and connected region extraction techniques were applied to

produce mergers of sets of building hypotheses, and the results were analyzed by the use of an

evaluation technique based on pixel coverage.

The simple hypothesis fusion approach developed here appears promising; the detection rate

can be improved significantly by applying it to the results of several building detection systems.
Much work remains to be done, however. Analysis of the fusion results has revealed

shortcomings in each of the building detection systems, and there are also a number of directions

to pursue in terms of improving the intermediate and final fusions generated during the overall

fusion process.

1. BABE produces two shadow thresholds, only one of which is used by SHAVE and

SHADE. It may be the case that the other threshold more accurately reflects the

shadow threshold for a given image, or perhaps some combination of the two may

prove more effective. Experiments need to be performed in this area.

2. GROUPER is effective in clustering the fragmented hypotheses that are typically

produced by BABE, but several of the grouped fragments do not correspond to
building structure in the scene. Experimentation with disparity maps to refine

these clusters is currently underway.

3. SHAVE's scoring system is simplistic and sometimes allows hypotheses with low

shadow scores to pass as good hypotheses. Alternative scoring schemes might be
explored.

4. SHADE's corner finding system can be improved. Work is currently underway on a

method for iteratively approximating the location of corners in noisy lines by using

an imperfect sequence finder to break lines at potential corners, and applying a

gradient-based line evaluation function to score the breaks.

5. The fusion steps in the overall fusion process tend to increase the number of false

positive pixels, and thresholding alone may not improve this without decreasing

the number of correctly hypothesized pixels as well. The use of a refined disparity
map, as well as the use of the original intensity image, may aid in eliminating false

positive pixels from hypothesized regions in the final fusion. Alternatively, active

contour models might be used to refine segmentations, using the fusion

segmentations (possibly thresholded) as the initial seed to the process.

6. Another interesting application of this fusion technique would be on binocular

imagery. One could imagine merging hypotheses from the left and right images of

a stereo pair to obtain an improved interpretation of a scene, since it is likely that
the left and right hypothesis sets would differ due to changes in image perspective.

Experiments are underway in this area.
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A moregeneralquestionconcernsthe effectivenessof simplefusion approachessuchasthe
one describedhere. Certainly, one can envision other approachesfor combining building
hypothesesthat would make use of a priori information about the systems producing the

hypotheses to produce meaningful fusions of the individual hypotheses. It is unclear, however,

whether such approaches would ultimately benefit from the additional complexity required to

take advantage of such knowledge. Although the results at this stage are rough, the fusion

method developed here appears to be a simple and effective means for increasing the building
detection rate for a scene, and may eventually provide a means for incorporating several sources

of photometric information into a single interpretation of the scene.
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Abstract: Increasing problems of forest damage in Central Europe set the demand for an

appropriate forest damage assessment tool. In this paper the Vision Expert System VES is

presented. VES is capable of finding trees in color infrared aerial photographs - this is the first

step towards an automatic forest damage interpretation system. Concept and architecture of VES

are discussed briefly. The system is applied to a multisource test data set. The processing of this

multisource data set leads to a multiple interpretation result for one scene. An integration of

these results will provide a better scene description by the vision system. This is achieved by an

implementation of Steven's correlation algorithm.

Key words: Aerial image understanding, image understanding, knowledge-based image analysis,

frames, object representation for computer vision systems, dot pattern correlation

1 INTRODUCTION

1.1 Forest damage interpretation

During the past years research concerning the assessment of forest damage using color infrared
aerial photographs was done at IVF. /VF stands for "Institut fiir Vermessungswesen und

Fernerkundung" - the Institute of Surveying and Remote Sensing at the University of Agriculture

in Vienna. The benefits of color infrared aerial photographs for the interpretation of vegetation
are discussed in detail in [Sch89]. However, to be able to understand the method described in this

paper, the reader should be familiar with a few details.

The condition of a tree is evaluated by interpreting the color of its crown in a color infrared

aerial photograph. Since, compared to damaged vegetation, healthy vegetation tends to reflect

more light in the infrared band and less in the red one (see Fig. 1.1), healthy trees look red in a

color infrared photograph, while bad trees will have less red and more green color, thus appearing

pale. But the color of a tree will depend on both the tree's vitality and the tree species. For
example, a healthy pine will show a color similar to the one of a damaged spruce.

In many parts of Central Europe a very intensive and heterogeneous kind of landuse takes place.

From the forest damage interpretation point of view this means, that normally many different
kinds of trees will be found within one forest stand. Also, the condition of the trees in a stand
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may vary significantly. In a typical

Austrian forest it is quite common to

find a pine by the side of a spruce and

to find a healthy tree close to a very

bad one. As a consequence, to get
correct results of a "forest-condition-

inventory", as it is called in Austria, it is

necessary, to interpret the species and

the color of the single tree. Trying to use

remote sensing methods for this forest-

inventory, data from satellites like
LANDSAT or SPOT are not

convenient, only aerial photographs will

provide sufficient spatial resolution.

Reflectivity [%]

healthy

,/

[nml

400 blue 500 green 600 red 700 infrared

Fig. 1.1 Reflectivity of vegetation (in principle)

Interpreting color infrared aerial photographs for forest inventory purposes therefore calls for the

following procedure:
1. Find a tree in the aerial photograph.

2. Determine the tree species.
3. Determine the tree vitality by interpretation of the color (and

the texture) of the tree.

In this paper we discuss the problem of finding trees in aerial photographs (1.) by means of

computer vision. While the color information is required for the determination of species and

condition of a tree (2. and 3.), tree-finding can be done using a monochrome image. Therefore

in this paper only monochrome images are shown. They were produced by averaging the three

color channels of a color infrared image.

1.2 A tree finding computer vision system

In addition to the task of fin-

ding trees the application of a

computer vision system will be
extended to serve for several

remote sensing tasks at IVF.

For this purpose an image un-

derstanding system - the Vision

Expert System VES - was built.
The architecture of VES has al-

ready been presented in detail

in [Pin88] and [Pin89]. The

system therefore will be dis-

cussed very briefly in chapter 2. Fig. 1.2 Original image Fig. 1.3 VES result

Figures 1.2 and 1.3 show the
result of VES processing a typical test-image. The scale of the image was 1:4000 and it was

digitized with a pixel size of 25_m. The digital image was 512x512 pixels (Fig. 1.2) and VES found

169 circular image objects from which 70 scene objects were derived (Fig. 1.3).
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There were several problems encountered in the course of this first application of VES. First of

all, the pixel scale was unrealistic - 1 pixel represented a square of 10cm 2 in the scene. Second,

the system was very slow due to an inadequate hardware component. Third, the experience with

the system led to more sophisticated ideas about representation and about the evaluation of the

interpretation result.

As a consequence, a successor system of VES - the Vision Station VS - is currently under

development at IVF. In a first step the VES functionality was ported to VS. Due to the better

performance of VS most of the "VES-results" presented in this paper were done on the VS

simulating a VES-behaviour.

At this point the evaluation problem should be discussed in more detail. A computer vision

system starts with a given image and a problem specification (e.g. "find trees"). As the process of

automatic image interpretation proceeds, a scene description begins to emerge. In the case of VES

this is a two-stage process. At first image objects are found. Then some of them are put into

relation to a certain scene object. There are several control strategies for vision systems: top-

down, bottom-up and bidirectional (Fig. 1.4).

The features of each of these strategies were

discussed by Matsuyama [Mat87]. He and many

others (e.g. [Hav83], [Keo85], [Pin89], [Nag80])

tried to avoid the problem of combinatorial

explosion of the search size in a bidirectional

system by using search space limiting control

structures (either top-down/bottom-up or other

limiting techniques in a bidirectional system).

Besides these "conventional" approaches there
have been more recent efforts to find other

control mechanisms (e.g. Matsuyama's hyper-

graph [Mat88] or Burt's pattern tree [Bur88]).

However, for a conventional system it is crucial

to be able to evaluate the interpretation results. In

VES and VS we try to calculate a quality value

for each object. This helps in discarding of very
uncertain objects. But these quality value calcu-

Scene descriptionObject model

top-down

1
(

bidirectional

digital image

1
bottom-up

)
Fig. 1.4 Control strategies

lations sometimes are imprecise themselves and the crucial questions still remain: Is the result

correct? Is the result complete? Are there still objects missing? Can the interpretation process

be terminated? As a conclusion, any additional source helping to improve the quality assessment

should be used. In this paper we will investigate the use of multisource data to gain a more robust

scene-description.

1.3 The test data set

The test data set is shown in Fig. 1.5. It consists of five aerial images taken at April 15, 1984

(images a. - d.) and August 23, 1984 (image e.). There are four different scales: 1:32000 (a.),

1:16000 (b.), 1:8000 (c.) and 1:4000 (d. and e.). These aerial images originally were taken to

investigate the abilities of human interpreters. It turned out that while it is still possible to locate

a tree in the 1:32000 image, the correct determination of tree species and tree vitality calls for

a scale of about 1:12000 - 1:15000 (this will also depend on the selected film type and on the

exposure and development conditions) [Sch89].
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a. spring 1:32000
c. spring 1:8000

Fig. 1.5

b. spring 1:16000
d. spring 1:4000 e. summer 1:4000

The test data set "Ranshofen D03"

Small portions of these five images, each showing the same part of the scene, were digitized with
25#m (a. and b.), 50#m (c.) and 100#m (d. and e.) pixel size. This lead to a pixel scale of

approximately 40cm in the scene (b. - e.) and 80cm in the case of a.. We plan to use this data
set for several purposes. We want to investigate resolution-dependent performance variations in
automatic tree detection and species interpretation [Bis89], [Pin90]. The data set also supplies

different views (in space and time) of the same objects. It is therefore expected to get a more
robust scene description by proper combination of results from several images.

1.4 Related work

Aerial image analysis has always been a major field of application for model based vision systems.
Most of them were concerned with finding artificial, man-made objects. McKeown et al. present

a rule-based approach in the system SPAM [Keo85]. Several systems were developed by

Matsuyama (e.g. ACRONYM, SIGMA, LLVE) [Mat87]. He used frames and he examined the
three "classical" control strategies bottom-up, top-down and bidirectional. VES also uses frames,
which were introduced by Minsky as a proper form of representation for vision tasks [Min75]. In
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the Mapsee2 system the similar concept of schemas was used for knowledge representation

[Hav83]. In our Vision Station the representation of objects is based on the Common Lisp Object

System CLOS [Bob88]. More recent work (e.g. Burt's pattern tree [Bur88], Matsuyama's

multilayered hypergraph [Mat88]) deals with hierarchical (pyramid) control structures, trying to
avoid the drawbacks of top-down, bottom-up or bidirectional. Earlier work includes the VISIONS-

System [Han78a],[Han78b] and a system by Nagao and Matsuyama [Nag80].

Most computer vision systems use a kind of modeling mechanism. There are object models in the

scene domain (3D) and image objects (2D). Image objects are found during the interpretation

process, thus being individual (vs. generic) objects. One can distinguish between the four object

classes discussed in detail below (see 2.3: scene/image, generic/individual). In comparison to

other systems, where a border between two classes may be missing or implicitly defined (see e.g.:

discussion of the importance of discriminating between image level and scene level information
[Mat87], short vs. long term memory in VISIONS [Han78b]), there is an exact definition of all

four classes in VES. This object representation scheme is in fact controlling most of the VES-

processes.

A complete computational model is given by Marr [Mar82]. Viewing our results as "place-tokens"

in the sense of Marr, we found a structure similar to Glass patterns [Gla69] and we tried to

correlate the results from different images using Steven's algorithm [Ste78]. Several mathematical

models were developed to describe the phenomenon of orientation perception in random dot

patterns [Mat90].

Dealing with the problem of the interpretation of natural (vs. man-made) scenes, the effort is

often directed towards a complete segmentation of the image (e.g. [Oht85], [Naz84]). Related

work concerning the application of finding trees in aerial photographs was done by Haenel et al.

[Hae87]. While he developed very specific algorithms for this task, we try to establish a more

universal vision system. Supplied with proper knowledge, VES and VS will be able to solve many

other perceptual tasks in remote sensing.

2 THE VISION EXPERT SYSTEM VES

There were several major goals in the development of VES. The system architecture should be

open and flexible. VES should be appropriate for a broad field of applications and experiments.

The resulting complicated framework was then filled with knowledge and methods for the specific
problem domain of finding trees. This was the first application test of VES.

2.1 Architecture and implementation

The claimed universality of the system to-
gether with the available hard- and software

at IVF led to a hybrid architecture. The

system consists of a host computer and an

image processing system. While under VES

both the image processing software and the

LISP-system is run on the same host, in the

VS-environment the LISP-part is done on a

seperate workstation. This is shown by the

I

!
LISP , Host

ComputerlComputer
I
I

Digital

image

proc.

system

Fig. 2.1 Hardware components
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dashed line in Fig. 2.1. The interaction
between the software components is illus-

trated by Fig. 2.2.

VES is organized as a top-down strategy

vision system with the possibility of being

extended to a bidirectional system in the

future. Core part of the system is the object

representation in frames. VES is implemen-
ted in INTERLISP. The frame representation

language FRL was used as a basis for the
VES frames [Rob77]. Most of the digital

image processing modules are written in
PASCAL.

2.2 The VES frames

commands i

expert dig. IP

proce-

dures

system _ results

Fig. 2.2 Interaction of software components

With the exception of two rules all the explicit knowledge is stored in frames. There are object-,
method- and procedure-frames. The frames are interconnected by various relations (e.g. ako/in-

stance, part/whole, represents/rep-by) thus forming groups of several semantic networks.

If there is knowledge about how to find a certain object, then the slot METHLIST of this object's

object-frame contains a list of applicable methods, each element pointing at a method-frame.
When a method is selected and applied the result usually is a sequence of processes. Some of
them will be LISP-functions, others are image processing modules. The interface between LISP

and the image processing modules is handled by the procedure-frames. They contain information

about the calling sequence, parameters and resulting effects of an image processing module.

2.3 Object representation

We distinguish between scene objects (OBSC) and image objects (OBIM) on the one hand and

between generic objects and individual objects on the other hand. While the latter

(CLASSIFICATION GENERIC or INDIVIDUAL) are a standard feature of FRL to separate
models from instances, the distinction between scene- and image-objects is quite common for a

computer vision system. In Fig. 2.3 the regions A and B represent the system's initial knowledge

before an interpretation is started ("static knowledge") - the models for scene objects and models

for image objects. Regions C and D constitute the "dynamic knowledge" about the interpreted

scene. During the process of image interpretation, at first individual image objects are found

(region D), later instances for corresponding individual scene objects are established (region C).

From the VES point of view, region C is the result of a successful image interpretation: it

contains all scene objects which the system has found in an image taken from a certain scene.

This is a description by objects, not a segmentation of the image. Normally the objects don't cover
all of the area of the image. During the course of an interpretation process, the system will try

possible relations between hypotheses for scene objects and already-found image objects. It will
end up with the best relation which finally constitutes the correct interpretation for the image

object.

Fig. 2.4 gives an example of an interpretation situation. The world is divided into scene- and

image-objects. An individual scene object (pine0) was found - pine0 is a pine, a tree and a scene
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object. It is represented in the imageby circle8. Circle8 is an individual circle, an area (vs. point

or line) and an image object. It currently represents the scene object pine0.

A

C

scene objects OBSC

(AKO ($VALUE (OBSC)))

(CLASSIFICATION ($VALUE (GENERIC)))

generic objects

individual objects

(AKO ($VALUE (OBSC)))

(CLASSIFICATION ($VALUE (INDIVIDUAL)))

image objects OBIM B

(AKO ($VALUE (OBIM)))

(CLASSIFICATION ($VALUE (INDIVIDUAL)))

(AKO ($VALUE (OBIM)))

(CLASSIFICATION ($VALUE (INDIVIDUAL)))

D

Fig. 2.3 The four different object classes of VES

2.4 Control of the interpretation process

The interpretation process is always invoked by the search for an object. A valid object must be

represented in a generic frame. Correct search commands might be:

(FIND '(TREE)) ... find trees,

(FIND '(TREE ROAD)) ... find trees and roads,

(FIND '(CIRCLE)) ... find circles (image objects).

After an initialization phase (loading and establishing of global parameters like name of the

image, scale, etc.) the system grasps the frame representing the object being searched for and the

top-down search process begins. The methods found in the slot METHLIST are evaluated and

the best method is chosen. While the search for image objects yields individual image objects, the

search for scene objects forces the search for corresponding image objects. For example, "find

tree" or "find road" might invoke "find circle" or "find line". If image objects are found they must

survive object-specific tests which are also stored in the method frame. Next, a scene object is

generated and the corresponding relations between scene- and image-object are set. A method

may also contain tests for scene objects. If a test fails, the scene object will be removed while the

image object remains. This completes a top-down process. A list of individual objects which are

all instances of the generic object that had been searched for was produced.

Two rules extend this pure top-down strategy. VES is trying to improve the interpretation by

applying these rules again and again, until no rule fires any more, thus finishing the complete

interpretation process.

Rule 1: If there are "tunable" parameters for an object being searched for, try to vary one

parameter and repeat the search.

Rule 2: If an object being searched for is known to have "contrary" objects, then extend the

search to these objects and check if a conflict occurs.
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($VALUE (CIRCLE)))
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(CLASSIFICATION

(8VALUE (INDIVIDUAL)))

(REPRESENTS

($VALUE (PINE0)))

.)))

Fig. 2.4 An example of scene and image objects
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3 DISCUSSING VES PROCESSES

In this chapter the processes and methods which were implemented to recognize trees in aerial

photos are discussed. Fig. 3.1 displays a very simplified scheme of the processes in VES. Starting

with the task (usually entered by the user) of finding a certain scene object OBSC, the search for

a corresponding image object OBIM is initiated. Image objects are found and connected with

scene objects, thus finishing one top-down process. Application of global rules leads to several

repetitions until no rule is applicable any more. The corresponding up-arrow in Fig. 3.1 is marked

with a dashed line because it is also possible to request one single top-down process without
application of global rules.

Search for OBSC

/
l
l

Parametertuning, resolving conflicts

L

\

OBSC found 4_

Search for OBIM

_OBIM found

Fig. 3.1 VES processes

After the initialization phase, VES is ready to accept search commands. One top-down process
is started by

(FIND '(TREE)) ... find trees.

A complete process, including multiple repetitions by application of the global rules, is invoked
by

(START '(TREE)).

VES finds the method METH0 in the slot METHLIST of the frame TREE. METH0 assumes

trees to appear as bright circularly shaped image objects. This assumption holds for trees inside

a forest and is a very good assumption to make in the central parts of an aerial photo where

objects are viewed from above. Towards the edges of the photograph, the direction of view is

changing, e.g. a spruce appearing not circular but triangular in shape. At first METH0 is searching

for bright circular image objects, next, every circle is assigned to an individual scene object "tree".

This is followed by a test. If two trees are standing too close to one another, the tree with the
larger radius is removed.

The application of METH0 automatically invokes the new task of

(FIND '(CIRCLE)) ... find circles.

The structure of the frame CIRCLE is similar to the one of TREE. The method METH1,

searching for bright circular image-objects in a stepwise process, is found in the slot METHLIST.
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A bright circular object maybe viewed as a local maximum of brightnessin the image. Usually
there will be a lot of texture information found within a tree's crown.This would lead to many
local maximawithin one crown.Therefore, a lowpassfilter mustbe applied before the searchfor
local maxima can take place.

The original black and white image (it was produced by averaging the 3 channels of a color

infrared image) is the input to METH1. Lowpass filtering is achieved by a local window operation

using the image processing system. The size of the window (the "size" of the lowpass) is calculated

from the image's scale and the expected size of the searched object (radius of the tree's crown

= radius of circle). Next to the lowpass filtering the local maxima are searched for. Because of

the preceding lowpass filtering, a local maximum usually covers an area of pixels of equal

brightness. The center of gravity of each area is taken as the exact location of the local maximum.

In the final step METH1 checks the found object for circular shape by inspecting the "radial

brightness distribution". This distribution is obtained by drawing concentric circles around the

maximum's position, summing up all pixels lying on a circle and taking the average (see Fig. 3.2).

For a circular object the resulting diagram (mean brightness / radius) should show a distribution

as in Fig. 3.2. The module which is computing the radial brightness distribution to decide whether

the object is circular needs the following three input parameters: smallest radius, largest radius
and minimum brightness decrease (the mean brightness has to be n% lower at the edge of the

object than at its center). It turned out, that the necessary brightness decrease n is scale-

dependent. In images of a scale of 1:4000 a good value for n was 35 - 40 %, while n had to be
reduced to 30 % for scales of about 1:8000. The module returns either the radius of the found

circular object at which this minimum decrease is reached or NIL, if any of the above three
conditions do not hold.

II I,LII III: ILI I Il'l I I I I

I-I 1 I IN I t I I

, I I I I &l I I I

I I I I I III I I I

i J ! I I I| I I I
IIIIIIIII,

iiiii

;ill

-+'-'_o_,_

! I I ->
o i 3 6 R ax/i,_Ts

Fig. 3.2 Radial brightness distribution

This completes one top-down shot. The two main stages are shown in Fig. 3.3 and Fig. 3.4 (the

original image is Fig. 1.2). Fig. 3.3 shows the lowpass filter (in this case a 25x25 window lowpass

was selected by VES) together with the local maxima. Fig. 3.4 shows the corresponding circles
that survived the "radial brightness distribution" test. Each of these circles is assigned to a scene

object (tree). Some of the trees are removed by the final test in METH0 (if standing too close).

If the interpretation process is started by (START '(TREE)), the global rules will be applied.

The parameter variation will produce two more lowpass filters and this will result in new local
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maxima, circles and trees. The
search for contrary objects (in
this test case a road was
entered manually) leads to the
elimination of trees that would
grow in the middle of a road.
The final result shown in Fig.
1.3 was obtained after two
parametervariations (19x19and
3lx31 lowpasswindow).

Fig. 3.3 Local maxima Fig. 3.4 Circles from Fig. 3.3

4 PROCESSING THE TEST DATA SET

We took a small portion of each of the five images Fig. 1.5 a. - e. each showing approximately

the same part of the scene. The size of these portions is 512x512 pixels (b. - e.) and 256x256

pixels (a.). All five images were processed with the standard VES tree-search (search for a default

crown radius of 2,5m followed by two parameter variations (1,25m and 5m)). The original 512x512

Fig 4.1 5122 portion of d. Fig. 4.2 5122 portion of c. Fig. 4.3 Circles from Fig. 4.2

Fig. 4.4 1282 portion of d. Fig. 4.5 1282 portion of c. Fig 4.6 A correlation result

ORIGINAL" PAGE'

BLACK AND WHITE PHOTOGRAPH

121 ORIGINAL PAGE IS

OF POOR QUALITY



images are shown for d. (Fig. 4.1) and c. (Fig. 4.2). Fig. 4.3 shows the circles found in Fig. 4.2
after the first top-down process. The final results (trees found) are shown in detail for 128x128

portions of d. (Fig. 4.4) and c. (Fig. 4.5).

The results of this experiment were very interesting: While even in the worst case (1:32000, image

a.) many of the large crowns were detected, there was no "perfect" interpretation in any of the

five cases a. - e.. Of course, the best results were obtained for the larger scales (c. - e.). But in

each result there were several trees missing that were found in another case. The same is true

for erroneous artifacts, which don't show up in more than one result at the same location. As a

conclusion - the desired result of the interpretation of the whole data set (a. - e.) would be a

careful combination of the several results. And, working with "intelligent" vision systems, we would

favour a robust solution that doesn't require too precise and detailed instructions, similar to the

ability of a person to identify the same tree in two different images.

As a first step towards this goal we tried the following procedure. We generated dot images of

the five results. For each tree a dot mark located at the center of the circle representing the tree

was produced. When two different results were overlayed and displayed in different colors, the

resulting image was very similar to the dot patterns described by Glass [Gla69] and Stevens

[Ste78]. In our case the patterns of one result may be converted to another one by assuming a

superimposition of translation, rotation and a small change of scale. The remaining "noise" is

caused by the individual height of each tree, and by the different position of the sun and viewing

position for each image. In addition, due to the imperfect interpretation, some points are missing

or added in the other image. Stevens called his patterns "Glass patterns" and he developed a loca/

algorithm for the correct correlation of associated points. We implemented Steven's algorithm

and tested it on the dot images generated from the interpretation results of a. - e.. One result of

a correlation between the two images shown in Fig. 4.4 and Fig. 4.5 is shown in Fig. 4.6.

The results of this experiment were imperfect but very promising. Taken alone, Steven's algorithm

is not effective enough for our patterns. This is due to the noise effects discussed above and due

to the occurence of rather large point displacements. The algorithm will have to be adapted for

our purposes - there are already several ideas for improvements. When viewed as one component

of a larger vision system, even the actual performance of the algorithm is valuable. The

correlation results will be processed by VES. Several heuristics may be applied, e.g. the fact that
correlated trees should be of similar size. The correlation should also hold for more than two of

the results (a. - e.). If there is a component in the system, that is able to determine the tree

species [Bis89,Pin90], then correlated trees must have the same species. Current research at IVF

is addressing these topics.

5 CONCLUDING REMARKS

It has been shown, that the use of multisource data can improve the quality and robustness of the

interpretation result of a computer vision system. While synergic effects of this kind are well

known, the proposed approach is also robust from another point of view. We do not need the

geometric rectification of our multisource data to compare them. We also don't need complete

or very accurate correlation results. The system is able of comparing two objects from two scenes

just like a human interpreter looking at the two images. In a way the knowledge of a system like

VES may be viewed as an alternate data source itself.
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Many problemswere discussedonly very briefly or not at all. The ideas about the representation

of objects, processes and methods in VES are improved in the VS environment. This

representation problem is closely coupled with the problem of control of the interpretation

process. Methods like the one described above can help in getting a better assessment of the

current interpretation result. Dealing with multisource data, the representation problem becomes

even more difficult: While there is one individual object, there can be several scenes (several

scene objects) and many images (many image objects). Furthermore we believe that a good
approach for a vision system in a natural environment should be rather different from the one

in a man-made environment. Fuzziness in shape and morphology of natural objects has to be
reflected in fuzzy and robust models and methods.
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Abstract

Topographic measurements of sea surface elevation collected by the Surface

Contour Radar (SCR) during NASA's Shuttle Imaging Radar (SIR-B) experiment are

plotted as three dimensional surface plots to observe wave height variance along

the track of a P-3 aircraft. Ocean wave spectra were computed from rotating

altimeter measurements acquired by the Radar Ocean Wave Spectrometer (ROWS)

aboard the same NASA aircraft as it was flown under the space shuttle Challenger.

Fourier power spectra computed from SIR-B synthetic aperture radar (SAR) images

of the ocean are compared to ROWS surface wave spectra. Fourier inversion of

SAR spectra, after subtraction of spectral noise and modeling of wave height

modulations, yields topography similar to direct measurements made by the SCR.

Visual perspectives on the SCR and SAR ocean data are compared, although for

surface tracks differing somewhat in space and time, for wind generated wave

fields observed off the coast of Chile in October of 1984. Threshold

distinctions between surface elevation and texture modulations of SAR data are

considered within the context of a dynamic statistical model of rough surface

scattering. The result of these endeavors is insight as to the physical

mechanisms governing the imaging of ocean waves with synthetic aperture radar.

Keywords: Doppler radar, ocean waves, image processing, computer graphics

Introduction

Remotely sensed earth science data offer the potential for monitoring

global change in our environment. Large data sets now exist and much more

information on the spectral properties of our oceans and atmospheres will be

forthcoming in the next decade. Visualization is emerging as a scientific tool

for investigating theoretical computer models of physical processes in relation

to empirical data from a variety of sensors operating over a wide range of

spatial and temporal scales. As an example, radar measurements of ocean wave

height and slope along the ground track of airborne and spaceborne remote sensors

are viewed as shaded surface perspectives to appreciate correlations in short-

scale texture and long-scale sea state during the Shuttle Imaging Radar (SIR-B)
experiment.

The NASA P-3 aircraft conducted underflights of the space shuttle

Challenger as it approached the southwestern coast of Chile (55°S, 80°W) on each

of 4 days, 9 October to 12 October 1984. As a result, directional surface wave

spectra have been computed from data acquired by the Surface Contour Radar [SCR,

Walsh et al., 1985] and Radar Ocean Wave Spectrometer [ROWS, Jackson et al.,
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1985] for comparison with Fourier wave power spectra computed from Synthetic

Aperture Radar [SAR, Beal et al., 1986] image data. The four day period was

characterized by a significant wave height that varied from 1.7 m to 4.6 m. The

lowest sea state occurred on i0 October when an actively growing wind driven

system with a wavelength of about 80 m appeared from the northeast propagating

approximately -30 ° from the look direction of the SAR. This data set is typical

of a fresh steeply sloped sea state in which non-homogeneous and transient

hydrodynamic modulations of backscatter influence the SAR Doppler imaging

technique. The highest sea state occurred the following day of II October when

the three radar remote sensors reached a consensus in measuring a well developed

swell with a wavelength of 270 m from the northwest. On 12 October this wave

field was observed with a wavelength of 380 m having diminished to a significant

wave height of about 3.5 m and turned so as to propagate along the shuttle track

about 90 ° from the SAP, look direction. The radars also detected an apparently

new wave system with a wavelength of about 140 m developing again from the

northeast on 12 October, the last day of the aircraft underflights. This data

set is of particular interest in modeling the along track and across track

imaging properties of SAR as it responds to waveheight modulations of surface

velocity and texture.

Homogeneous ocean wave fields induced by distant storms and imaged with

SAR may be fast Fourier transformed to estimate directional wave power spectra

for oceanographic applications. However, individual wave groups are not

necessarily well characterized by the normal statistics of the spectral approach

and might be better examined in speckle reduced SAR images with restored wave

height significance. Hence, Fourier domain restoration and enhancement filters

have been developed [Tilley, 1987] to apply what has been learned about the SAR

ocean-imaging modulation transfer function in the spectral domain and derive

estimates of surface elevation in the image domain. Speckle reduction is based

on empirical methods for determining a broadband spectral noise floor that can

be subtracted as the random influence of transient surface facets tilted toward

the radar as it looks down at a 23 ° incidence angle upon a homogeneous rough

surface. Such a spatially stationary distribution of backscattering facets has

been used to estimate the SAR wavenumber response for the SIR-B remote sensor

[Tilley, 1986] using data collected over Baie Missisquoi near Montreal, Canada

on October 7, 1984. This stationary response function can be used in an inverse

Fourier filtering operation to improve the broadband spectral response of the

SAR data obtained off the coast of Chile a few days later.

Non-homogeneous rough surface scattering may well be deterministically

related to waveheight via a hydrodynamic modulation theory that is not well

understood at present. However, it is apparent that the SAR along track

wavenumber response is limited by ocean dynamics and can be partially restored

[Tilley, 1987] with an empirical model of surface motion blurring based on a

stochastic distribution of backscattering events in the time required for Doppler

image synthesis. After the empirically estimated stationary and dynamic response

functions are applied to SAR spectra, a broadband power threshold is applied to

separate wave signal from random noise. A theoretical model of surface tilt and

velocity modulation [Monaldo, 1987] is then applied to restore wave height

significance to the Fourier image power. Advances in SAR spectral processing

techniques are required to improve remote sensor estimates of ocean wave height

variance, including distributions over wavelength and propagation direction, for

the variety of sea states that are of interest to oceanographers, ship captains

and coastal authorities. The object of ocean research with SAR is to develop
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theoretical descriptions of radar cross section modulations that can be

parameterizedby empirical analysis of Fourier statistical data. Fourier spectra

can then be compared with ocean wave spectra, or inverse transformed and compared

with ocean surface topography, to evaluate SAR methodology using non-Doppler

radars (e.g., the ROWS and SCR) that make more direct measurements of geophysical

surface statistics.

Synergy of Aircraft and Spacecraft Ocean Observations

The SAR, SCR and ROW data collected during the SIR-B experiment at the

Chilean site have all been processed to yield directional ocean wave height

variance spectra in common units of m 4. Intercomparisons in this format have

been reported [Beal, 1987] for the purpose of designing future SAR systems and

assessing their potential value to computer wave models. In general, the three

radar remote sensors were able to reach a consensus for all the sea states

encountered, although the fresh wind-driven sea with low wave height on I0

October appeared to be somewhat misrepresented by the SAR. Therefore, this SAR

scene is the subject of continuing investigation to develop assessments of the

various algorithms applied for signal detection, clutter suppression and

restoration of wave height significance. Comparisons with ROWS spectral

estimates are considered in terms of action variance, in units of m 2. Once the

ROWS data have served to guide the SAR to its best spectral estimates of the wave

field, an inverse Fourier transform is applied to recreate SAR scenes of the

surface elevation. Comparison with SCR measurements of surface topography are

made by computing wave height statistics over similar ocean sites and by

computing three dimensional surface visualizations of non-homogeneous wave

grouping at these sites.

On 12 October at the Chilean site, the ROWS spectra depicted in Figure la

indicates a 380 m wavelength system, propagating nearly along its eastern flight

direction, that appears spread at low power to a more southerly heading. A

weaker 140 m wavelength system, propagating across the ROWS flight direction,

is apparently detected near the instrument's signal-to-noise limit and may be

confused with or the cause of the broadening observed for the dominant swell.

Both of these wave systems are also detected by the SAR, as shown in Figure ib,

when only the empirical instrument response functions are applied to estimate

the wave action variance spectrum. The space shuttle was also travelling along

an eastern flight direction, so it is not surprising that the SAR, as well as

the ROWS, is able to detect the weak wind driven wave system via surface tilt

modulations of backscatter occurring in the across track direction. The SARalso

observed the dominant swell wave system travelling along its flight direction.

An image of surface wave height variance can be computed by an inverse Fourier

transform of the SAR spectrum after a theoretical ocean imaging transfer function

is applied to account for both surface tilt and velocity modulations of the

backscattered field. The interaction of the long 380 m wavelength swell and the

140 m wavelength wind driven sea are represented in Figure 2a as a computer

generated visualization of the surface elevation. A similar visualization is

depicted in Figure 2b where the direct ranging measurement of surface topography

is depicted over 3 SCR aircraft tracks, each 400 m wide, to simulate the same

coverage as the spacecraft SAR.

On i0 October at the Chilean site, the ROWS aircraft and the space shuttle

carrying the SARwere even more closely aligned along eastern flight directions.

Both remote sensors detected an 80 m wavelength wind driven system propagating
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at 60 ° and a 200 m wavelength swell propagating at 130 ° from their flight

direction. The spectral amplitude of the wind driven sea dominated that of the

longer swell for both the ROWS and SAR remote sensors after correction for their

respective instrument response functions. The surface tilt and velocity

modulations of radar cross section may not suffice to describe SAR ocean imaging

when the non-homogeneous and transient seas violate the ergodic and stationary

assumption of two-scale scattering models. Hence, the SAR image spectrum was

inverse transformed both before and after the application of the ocean imaging

transfer function traditionally used to restore wave height significance. The

statistics of the two Fourier filtered SAR images are compared to SCR surface

elevation statistics in Figure 3 over 6 km 2 ocean segments differing spatially

by about 20 kilometers and temporally by about 2 hours. This data set also

presents a unique opportunity to compare surface height and texture

acting in hydrodynamic modulation of radar resonant wavelengths (i.e., 23 cm

surface waves for the L-band SAR) by longer wind generated waves (i.e., the 80

m sea) with periods comparable to the scene integration time. The correlation

properties of the surface elevation and texture are visualized as a shaded

surface plot in Figure 4, assuming that the wave action spectrum is proportional

to height variance without tilt and velocity bunching modulation.

Computing and Displa7 Technology

The radar data presented herein were collected in 1984 and have been

processed and displayed using image processing and computer graphics workstations

that have evolved in several different departmental facilities. Initial

development of the SAR Fourier filtering algorithms was accomplished with a PDP-

11/70 minicomputer system purchased from Digital Equipment Corporation at the

beginning of the decade. Ocean images scaled to 32-bits in intensity over 512

x 512 arrays of picture elements (pixels) could be fast Fourier transformed in

about 13 minutes using an optimized mass storage algorithm to coordinate data

transfers between the 64K word memory partition of the 16-bit computer and large

magnetic disk peripherals. Fortran program code was developed to apply filtering

algorithms to the complex spectral database prior to inverse Fourier

transformation. About i hour was typically required to restore wave height

significance to a SAR ocean scene.

A Comtal Vision One/20 image processor was interfaced to the PDP-II/70 in

1981 allowing DMA transfers of the 512 x 512 x 8 bit pixel scenes over a UNIBUS

in about i second. This system was equipped with 2 Mbytes image memory and an

LSI-II microprocessor controlling a pipeline delivering up to 30 ocean scenes

a second to a 512 x 512 x 24 bit color monitor. A Matrix camera, Model 4007,

was also acquired and interfaced to R,G,B outputs from the color monitor. This

unit can be used to expose 35 mm roll film or format from i to 25 images on 8"

x i0" sheet film. Figures found herein were photographed with this image

processing and display system which now stands alone receiving its inputs from

9-track magnetic tape.

The SAR and SCR surface plots in the figures were computed using the PV-

WAVE software package developed and supported by Precision Visuals, Inc. Version

2.2 of PV-WAVE running on a DECstation 3100 workstation offers the algorithms

for using SAR texture information to shade a surface plot of ocean wave height

visualized from a number of elevation and rotation angle perspectives. PV-WAVE,

Version 1.0, is also installed on a VAXstation 3500 interfaced via a Q-bus to

a QUEN-16 wavefront array processor. This desktop processor is being developed

128



jointly by Interstate Electronic Corporation and The Johns Hopkins University

Applied Physics Laboratory. Initial experimentation with the QUEN-16 have shown

that a 512 x 512 x 32 bit two dimensional fast Fourier transform computes in

about 20 seconds. Basic spectral filtering algorithms are now being programmed

and tested on the QUEN/VAX system. Wave height perspectives will be computed

from SAR image data in minutes, rather than hours, allowing experimentation with

new Fourier filtering algorithms. Larger ocean scenes, from SAR processors

producing up to 8192 x 8192 x 64 bits of complex pixel data, could be addressed

with future improvements in this workstation. Such a capability will accelerate

development of hydrodynamic imaging models that will improve our understanding

of microwave radars like the SCR, SAR, and ROWS.

Summary

Oceanographic remote sensors operated from aircraft and spacecraft as part

of NASA's SIR-B experiment have yielded surface data at comparable resolution,

but over ocean regions of different size. The spacecraft SAR images were Fourier

filtered to obtain topographic information using a linear model of the SIR-B

system response and modulation transfer function. The SAR instrument response

functions were parameterized to yield Fourier spectra similar to those obtained

by the ROWS instrument. A spectral power threshold was applied to segment the

SAR image data to representation of surface elevation and texture.

The filtered SAR data were plotted as three dimensional surfaces to

visually compare their estimate of wave height variance with that of the SCR.

The SAR surface plots were also shaded with their texture information (generally

referred to as speckle noise) to visually correlate short scale backscatter

modulations with long wave height. For the wind driven sea observed on i0

October 1984 off the southwest coast of Chile, the synergistic study of SAR, SCR

and ROWS data indicates that the speckled texture of SAR imagery may contain

useful information and that a hydrodynamic theory of backscatter modulation is

needed to supplement velocity bunching and tilt modulation theories.

The Johns Hopkins University Applied Physics Laboratory is developing the

QUEN wavefront array processor [Dolecek, 1989] to serve as a rapid prototyping

tool that can be applied to general purpose visualization in a desktop or

personal computing environment. SAR processing algorithms are now being

transferred to a QUEN-16 unit hosted by a VAXstation 3500 workstation to

implement a menu driven user interface. Fourier filtering experiments applied

quickly over larger ocean fields will accelerate research directed towards

developing a hydrodynamic model [Tilley, 1990] of ocean imaging with spaceborne

SAR remote sensors. High speed graphics visualization and flight simulations

combined with simultaneous comparisons with scanning altimeter data will

facilitate the communication of theoretical hypotheses and assist in their

evaluation.

Applications of remote sensor technology for earth science include

documentation of coastal erosion, surveillance of oil spills and prediction of

hurricane tracks. Monitoring global change in our environment will require that

remotely sensed data, collected at different scales in time and space, be

reviewed, reduced and assimilated into physical models. High speed data

distribution networks, desktop workstations, and advanced computing technology

[Jenkins, 1989] are now being developed at The Johns Hopkins University Applied

Physics Laboratory. Computer visualization is emerging as a combination of
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three-dimensional graphic concepts with two-dimenslonal image processing methods

as a scientific tool for investigating relationships between theoretical models

and empirical data. It is planned to apply these resources to models of

microwave scattering from rough surfaces that can be investigated with radar data

from oceanographic remote sensors. The result of this exemplary endeavor will

be insight as to the physical processes governing the wind generation of ocean

waves.
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(a)
1875 m

square

(b)

1200 m

square

Figure 2 SAR (a) and SCR (b) surface elevation data are plotted as

three dimensional graphs depicting wave height variance for a 380

meter swell and a 140 meter sea, respectively, propagating along and

across the swaths of the remote sensors. The SCR swath was only 400

meters wide so that 3 data sets approximate the contiguous SAR seg-

ment, although at a different place and time.
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Figure 3 A 200x200 pixel segment of the Fourier filtered SAR image (a) is

depicted as a two-dimensional distribution of the wave action intensity. Tilt

and velocity bunching modulations of the SAR cross section can be included in

the Fourier filter to simulate the wave height distribution (b), which can be

compared with the SCR topography (c) along 5 separate aircraft tracks. His-

tograms (d) of pixel intensity counts are computed for the three data sets.
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Figure 4 Long scale and short scale ocean wave correlations are

evident in a three-dimensional surface plot of the SAR wave action

intensity that has been shaded with speckled data values derived

from the unfiltered SAR image.
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ABSTRACT

To date, global models have been just that. They have

identified problems common to the peoples of the globe, without

setting forth a basis for the specific actions carried out by

specific peoples that could step toward a resolution of the

identified problems. There is another way.

Satellites acquire information on a global and repetitive basis.

They are thus ideal tools for use when global scale and analysis

over time is required. Data from satellites comes in digital

format which means that it is ideally suited for incorporation in

digital databases and that it can be evaluated using automated

techniques.

The paper proposes the development of a global multi-source data

set which integrates digital information regarding some 15000

major industrial sites worldwide with remotely sensed images of

the sites. The resulting data set would provide the basis for a

wide variety of studies of the global economy.

The preliminary results obtained to date give promise of a new

class of global policy model which is far more detailed and

helpful to local policy makers than its predecessors. It is the

central thesis of this proposal that major industrial sites can
be identified and their utilization can be tracked with the aid

of satellite images.

The Problem

The focus of this paper is the role of policy, resources and the

environment in economic and social development. The world view

which it attempts to sketch for the reader will be alien to many

who perceive economics as a policy science increasingly concerned

with abstract "macro" entities. To be of use to humankind,

policies for humans must be on a human scale. Moreover, it is of

central importance that peoples be moved to perceive the

objectives of the policies as important to them. To date, global

models have been just that. They have identified problems common

to the peoples of the globe, without setting forth a basis for

the specific actions carried out by specific peoples that could

step toward a resolution of the identified problems. There is
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another way. Humans must have stories, images, habits and rules

of thumb to llve in complex environments and they Just don't

have them as they relate to our world as a whole. Simply browsing

an atlas or even a world globe is an exercise in looking at more

information than an individual can handle at once. The

importance of manufacturing activity in the total market

economy makes it imperative that manufacturing images and

understandings be developed along with those which have to do

with agricultural lands, forest lands, air quality, water

quality, etc. The purpose of this proposal is to seek support

for a project which will contribute to manufacturing images and

understandings.

Satellites acquire information on a global and repetitive basis.

They are thus ideal tools for use when global scale and analysis

over time is required. Data from satellites comes in digital

format which means that it is ideally suited for incorporation

in digital databases and that it can be evaluated using automated

techniques.

Background

In order to approach the problems discussed above, a number of

preliminary efforts have been undertaken. The first effort was

a study of the relationship between economic activity in the 494

Rand-McNally basic trading areas and the sites of major

manufacturing facilities. The 494 basic trading areas have

1361 sites of major economic activity. The 378 trading areas

with manufacturing sites have a total employment in

manufacturing of 20529027. The 116 trading areas without

manufacturing sites have a total manufacturing employment of

1385727. The observation that 80 percent of the trading areas

have 95 percent of the manufacturing employment indicates that an

appropriate definition of "major" was utilized in the

identification of the manufacturing sites. A simple linear

regression of sites against manufacturing employment suggests

that there are 12804.5 employees per site. The results are

statistically significant at the one percent level. The scale of

the coefficient (1/4 of the total reglonal mfg. employment)

again points to an appropriate definition of "major". Moreover,

it was possible by further work to account for nearly 85% of

manufacturing employment on an industry by industry basis.

The second effort undertaken was to construct a global database

of regions which include as their centers, 738 cities chosen for

their scale, their size in relation to their neighbors or their

role as largest city in a nation bounded by geographic barriers

or other regions. Based on the size given for the cities

used as regional centers:

Average size of the largest city

Number of cities per country

959173

3.67052
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A profile of manufacturing employment for the regions centering

on each city was computed based on the U.S. estimates. That is,

each of approximately 13000 plant sites was assumed to provide

the same level of employment provided by its counterpart in the

United States. Assuming that a local labor-force is trained to

work in manufacturing (L) and that fuel (F) and machines (K) are

imported a production function would appear as:

Output = f(L,F,K)

When estimates are aggregated
result is obtained for 50 countries

available:

by country the following

on which World Bank data is

National income = .45 * L'.54 * F'.24 * K'.I8

R'2 = .912

F = 158.915

In essence, over 90 percent of the variation in national income

appears to be accounted for by the site based employment

estimates, fuel imports and machine imports. The close fit and

plausible magnitude of the coefficients are taken as

preliminary evidence that the U.S. based estimates will serve as

reasonable substitutes for the actual levels of manufacturing

employment in the regions.

A third effort sought to understand the scale of cities

around the globe on the basis of the economic activity which they

sustain. On a global basis, commercial farms, trading facilities

and the manufacturing facilities discussed above can be shown to

determine the scale of the cities supported by a given region.

A fourth effort has been directed at the development of a

multi-level hierarchical flat-file manipulation language which

allows relational operations on digital geographic information

systems as well as the storage of links to image collections.

Language M is the result of that effort. It has been in

commercial use for nearly two years.

In a fifth project, DIRIGO - an image processing system, for

remote sensing data has been developed. The DIRIGO system adheres

strictly to the Macintosh interface guidelines and hence enables

users to become quickly familiar with the system. The system

supports four file formats (i) image data, (2) ASCII text files

of control point coordinates or training area statistics, (3)

classified images and (4) training areas for classification. An

intelligent interface insures that only files with the

appropriate format can be opened for the selected application

tasks. At present DIRIGO supports (i) point operations such as

linear and Gaussian contrast stretch and histogram equalization;

(2) spatial filtering; (3) geometric correction such as image-to-

map rectification and image-to-image registration using first-

degree polynomials and standard re-sampling techniques; and (4)
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classification techniques such as parallelpiped, minimum

distance, and maximum likelihood. Execution times for a 512 by

512 image with three bands range from seconds to approximately
five minutes for a maximum likelihood classification with six

classes.

The results reported above give promise of a new class of

global policy model which is far more detailed and helpful to

local policy makers than its predecessors. It is the central

thesis of this proposal that major industrial sites can be

identified and their utilization can be tracked with the aid of

satellite images. The concept that a major industrial facility

gives rise to employment and income which cannot be ignored is

both simple to grasp and open to verification. Policy makers

are already highly sensitive to plant openings and closings on

the scale of the plants studied here. Indeed these "local"

matters are matters of focus for legislatures, the press, trade

unions, chambers of commerce and others. By global

interdependence is meant that those actors must become aware of

the kinds of changes occurring elsewhere on the globe that will

influence the plants with which they are concerned. The paper

industry in Green Bay should be vitally interested in changes in
Finland.

Project Objective

The objective of the project being proposed is to produce a

remotely sensed image for each of the 13,000 major industrial

sites worldwide. A latitude and longitude as well as an
industrial classification can be identified for each site. Given

this information and a scene which centers on the information it

should be possible to identify the major site and a variety of

the key facilities which are physically associated with it by

interpretation. It would be expected that the working image so

identified would be but a small fraction of the total image

from which it would be extracted. That is, the industrial

plant image would usually occupy less than one tenth of one

percent of the total image. Thus each plant image would be

expected to require only about 36k of storage. The complete

global collection of images covering all sites of economic

interest would be reduced to an easily manageable 1/2

gigabyte. A full working system for global analysis and

modelling including detailed digital demographics for each of

the regions and a variety of digital maps could be handled in

less than 600 megabytes.

Products of the Project

With the images identified by site a variety of analyses are

enabled. In principle, interpretation could be supplemented by

automated analysis. A few of the many possibilities are:

. A study of the requirements of the industry

specific sites based on the analysis of the
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images of the site. Buildings, parking lots, water

sources, retention basins, storage space, special

facilities, etc would be open to examination.

. A comparison of image features to known

characteristics of the plants from other sources.

Such analysis would, for example, make it possible

to distinguish integrated manufacturing facilities

from assembly plants, consider power requirements

and siting, the relationship to common public

facilities, residential spaces, transport networks
and the like.

. A third form of analysis would proceed with the

tracking of these sites over time and the relating

of the characteristics of the tracked images to the

known economic and operating characteristics of the

plants.

. The most straightforward product of the proposed

effort is a digitized industrial atlas of the world.

The resulting product would have an exceedingly wide

range of potential uses. It is possible to compare

potential industry sites based on the characteristic

parameters of other existing industrial sites. If

criteria can be established combining image and

non-image information of the global database, it will

be possible to rate potential sites based on this

information. Earlier work in this area by the project

principals includes the development linear

associative retrieval systems for use in comparative
evaluations.

. It would be possible to include other (future and

current) satellite images with other spectral

information (e.g., thermal, mid-infrared, microwave

etc.) and tie this together with SPOT's high spatial

resolution. This would allow multispectral,

multitemporal, and multispatial site assessments.
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ABSTRACT

This paper gives a brief overview of multisource data fusion techniques. Three types of data

integration methods, namely pixel, feature, and decision-level fusion are discussed. The paper

also gives a summary of all the papers presented at the IAPR Workshop on Multisource Data Inte-

gration in Remote Sensing, categorizing the type of data fusion methods used and detailing the

utilization of multisource data sets in earth science applications.

1. OVERVIEW OF MULTISOURCE DATA FUSION TECHNIQUES

With the recent advances in sensor technology, the number of different sensor platforms that

carry imaging payloads has increased tremendously. These sensors produce data covering differ-

ent portions of a broad range of the electromagnetic spectrum at different spectral and spatial res-

olutions, fumishing users with enormous amount of useful information for terrestrial, oceanic,

geophysical, meteorological, reconnaissance, surveillance, and planetary studies. In addition to

these spacebome and airborne sensory data, digital conversion of analog data such as aerial pho-

tographs, topographical and geophysical data are also available for researchers. These data are

heterogeneous in their format, radiometric characteristics, geometric properties, and temporal

sampling. To fully exploit these increasingly sophisticated multisource data, advanced analytical

or numerical data fusion techniques must be developed.

Data fusion techniques can be categorized into three types according to the stage at which fu-

sion takes place. The three types are pixel, feature, and decision-level fusion techniques. Pixel-

level fusion techniques form 'new' pixels with a pre-selected spatial resolution common to all

data sources involved. Sensory and/or ground reference measurements for each of the 'new' pix-

els are derived from the original data sources. These measurements are then accumulated for each

'new' pixel. Image registration is a typically example of data fusion performed at the pixel-level.

In this case, pixel-by-pixel comparison of multiple images of a scene obtained from different sen-

sors or taken from the same sensor at different time are formed. It is accomplished by spatially

registering the images, namely correcting for relative translational shifts, magnitude differences,

rotational shifts, as well as geometrical and intensity distortions of each image. Pixel-level fusion
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allowsdifferent sensoryor groundreference information be accumulated for each 'new' pixel.

Feature-level fusion techniques generally start with applying image analysis techniques to extract

some features from each data source independently. Certain measurements of the extracted fea-

tures are derived from each data source and these feature measurements are then integrated. For

instance, when both visible and thermal infrared image data are available, regions of nearly ho-

mogeneous intensity can be extracted using image segmentation techniques. Average intensity

value and average surface temperature of each region can be calculated from the visible and ther-

mal infrared images respectively. The intensity and temperature information are fused at the re-

gion-level in this example. Decision-level or interpretation-level fusion deals with integrating the

various versions of interpretation obtained from the different data sources to arrive at a consensus

interpretation. For example, in the case of image classification, the interpretation or classification

results can be represented in terms of probability assignments. Bayes rule and Dempster-Shafer's
rule of combination are often used as a means to reinforce common interpretation and to resolve

differences in order to arrive at a more complete and accurate interpretation. They are typical ex-

amples of decision-level fusion techniques.

A summary of all the papers given at the IAPR Workshop on Multisource Data Integration in

Remote Sensing is presented in the next section. The data types and data fusion methods used in

each paper are discussed. Fusion techniques are categorized into either pixel, feature, or decision-
level fusion. The utilization of multisource data sets in earth science applications by each paper is

also briefly described.

2. SUMMARY OF WORKSHOP PAPERS

The paper entitled "Refinement of Ground Reference Data with Segmented Image Data" by

Robinson and Tilton discusses an approach to refining and adding detail to the ground reference

data through the use of satellite image data. More specifically, the approach segments the Landsat

TM images, finds the edges from the segmentation, and uses the edges from the ground reference

data to mask out those segmented edge points that are beyond a certain distance from the refer-

ence data edge points. This approach is categorized as a feature level integration method where

the edge information extracted from ground reference data and Landsat TM image data are fused.

This fusion allows reference edge error be corrected and detailed edge information be added to

the ground reference data.

The paper entitled "Near Ground Level Sensing for Spatial analysis of Vegetation" by Rasure,

Sauer and Gage describes a workstation based image processing software system called Chorus.

This system consists of a low level segmentation process, a supervised and unsupervised cluster-

ing process, an object feature extraction process, a classification process, and a region labeling

process. The system has been used to process near ground level image data to distinguish living

biomass from non-living biomass. No multisource data fusion is discussed in this paper. Howev-

er, correlation between changes detected from Landsat TM image data and those observed from

near ground level image data will be studied in the future.

The paper "Integration of SAR and DEM Data -- Geometrical Considerations" by Kropatsch

describes an approach to fusing information from SAR images and Digital Elevation Model
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(DEM) databasedonestablishingsomegeometricalrelationsbetweenthedatasets.Layoverand
shadowregionsaredetectedin SAR images. Suchregionsarealsofound independentlyusing
DEM data. Informationfrom bothdatasetsarethenaccumulatedthroughgeometricalmatching
of theselayoverandshadowregions.This fusiontechniqueis consideredto beatthefeaturelevel
wherethefeaturesarethelayoverandshadowregions.

The paperentitled "TowardsOperationalMultisensorDataRegistration"by Rignot, Kwok
andCurlanderaddressesthe problemof automated precision registration of multisource image

data acquired from a number of different remote sensors. Two types of registration techniques are

presented. The first technique uses the Digital Elevation Model (DEM) to simulate the sensory

data such as Landsat TM, Seasat and SPOT, therefore the various types of optical data are regis-

tered. The second technique first extracts features such as edges from the different images and

then matches the extracted features between the different images. This feature matching tech-

nique replaces the manual selection of tie points for transformation parameter estimation. Both

techniques allow us to accumulate information from different sensors for each pixel at a pre-se-

lected spatial resolution common to all sensors involved. Registration is, in general, considered to

be a typical example of data fusion at the pixel level.

The paper "Combined Fluorescence, Reflectance, and Ground Measurements of Stressed Nor-

way Spruce Forest for Forest Damage Assessment" by Banninger discusses the problem of using

remote sensing data, laboratory data, and ground measurements to monitor and differentiate stress

or damage in forested areas. Discrete data sets such as foliar chlorophyll-a and nitrogen content,

leaf area indices, and foliage reflectance and fluorescence measurements are obtained from sam-

ples collected at 50-m intervals over the test sites. These discrete data sets are resampled to facil-

itate information integration with remotely sensed data such as Landsat MSS and TM, NS001

TMS, TIMS, AIS-2 and FLS/PMI. Therefore, the data fusion is performed at the pixel level.

The paper entitled "A phenomenological Approach to Multisource Data Integration : Analyz-

ing Infrared and Visible Data" by Nandhakumar describes a region classification approach based

on integrated analysis of thermal IR and visible data of remotely sensed scenes. In his approach,

the visible image is first segmented into regions of nearly homogeneous intensity. The thermal IR

image and a phenomenological model describing the exchange of energy between the imaged sur-

face and the environment allow the estimation of surface heat flux for each pixel. Here, the sur-

face temperature information is fused with the intensity values from the visible image at the pixel

level. When the information is used to classify regions into distinct class categories, data fusion is

performed at the feature level where the features are the segmented regions. Aggregated intensity

and surface temperature values are computed for each region and used as discriminants in a rule-
based classification scheme.

The paper entitled "A Method for Classification of Multisource Data Using Interval-Valued

Probabilities and Its Application to HIRIS Data" by Kim and Swain discusses a method of classi-

fying multisource data in remote sensing. The authors defines what is called the interval-valued

probability which is a generalization of the point-valued probability designed to represent the pos-

147



sibility of smalldeviationsfrom the unknowntrue probability. Their approachtreatseachdata
sourceasabodyof evidence,representstheevidenceprovidedbyeachdatasourcein termsof in-
terval-valuedprobabilities,andusestheDempster-Shafer'srule of combinationto integratethe
interval-valuedprobabilitiesform differentdatasources.This integrationis thereforecategorized
asto beat thedecisionor interpretationlevel. This methodcancombineparametricaswell as
nonparametricinformation.

Thepaper"ImprovedDisparityMapAnalysisThroughtheFusionof MonocularImageSeg-
mentation"by Perlantand McKeown first addressesthe issueof using the segmentationof the
monocularimagery to improvethe estimatesof three-dimensionalscenestructure,namelythe
scenedisparitymap. Their approachgeneratestheinitial disparitymapfrom a stereopair of im-
agesusingarea-basedand/orfeature-basedmatchingtechniques.Then thesurfaceillumination
informationprovidedby amonocularimageis usedto segmentthe imageinto regionsof nearly
homogeneousintensity.Basedontheassumptionthatsuchregionscorrespondcloselyto physical
surfacesin the scene,theregion informationis usedto removemismatches.Here,thedisparity
informationextractedfrom stereopairis fusedwith segmentationresultsobtainedform monocu-
lar imageatthefeaturelevel wherethefeaturesarethesegmentedregions.The authorslaterad-
dress the problem of using a numberof different region segmentationmethodsand stereo
matchingtechniquesto improvebuildingextractionaccuracy.Eachpair of regionsegmentation
andstereomatchingtechniquesproducesaversionof buildingextractioninterpretation.Thevar-
iousversionsof interpretationarethenusedin avotingprocessto arriveat aconsensusinterpreta-
tion. The information integrationusedhereto achievea morecompleteandaccuratebuilding
extractionis consideredto beat thedecisionor interpretationlevel.

Thepaperentitled"Useof InformationFusionto ImprovetheDetectionof Man-MadeStruc-
ture in Aerial Imagery"by ShufeltandMcKeownaddressestheproblemof building information
fusionin aerialimagery. Sinceit is assumedthatnosingledetectionmethodwill accuratelydelin-
eatebuildings in every scene,a cooperativemethodis proposed. Variousbuilding extraction
techniquessuchastheonesbasedonedgeanalysis,shadowanalysis,andstereoanalysisareused
to producebuildingdelineations.Thedifferentdelineationresultsaresuperimposedto generatea
moreaccuratebuilding interpretation.Quantitativemeasuressuchasbuilding percentage,back-
groundpercentageand branchfactor areutilized asa meansto evaluatebuilding extractionre-
suits. In this study,only onetype of sensorydata,namely,theaerial imageis used. Therefore,
fusionis not performedusingdifferentsensorydata,but ratherusingthedifferentdelineationre-
suitson thesameimagedata. Theinformationfusedis theedgeinformation. It is thereforecate-
gorizedasafeaturelevel integrationmethod.

Thepaper"A ComputerVision Systemfor theRecognitionof Treesin Aerial Photographs"
by Pinz describesthe conceptof a computervision systemcapableof finding treesin infrared
aerialphotographs.Genericdescriptionof a typeof anobjectis integratedwith the imageobject
whereanobjectis, in thiscase,a tree. The treerecognitionresultsfrom aerialphotographstaken
atdifferentresolutionscalesandundervariousconditionsarealsointegratedatthefeature,name-
ly tree,level.
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Thepaper"VisualizingCharacteristicsof OceanDataCollectedDuring theShuttleImaging
Radar-BExperiment"by Tilley discussesthecomputationof oceanwavespectra(powerspectra
of theFouriertransform)from SIR-B SurfaceContourRadar(SCR)dataandthecomparisonof
theseclustersof energywith thosecomputedfrom theRadarOceanWaveSpectrometer(ROWS)
dataandtheSIR-B SyntheticApertureRadar(SAR) datato parametrizemodelsof oceanimag-
ing. No datafusionof thesethreetypesof sensorydatais usedin this study.Fusionwill, howev-
er,beconsideredin thefuture.

Thepaper"A proposalto ExtendOur Understandingof theGlobalEconomy"by Houghand
Ehlersproposesthe developmentof aglobal multisourcedatasetwhich integratesdigital infor-
mation including remotely sensedimagesregarding15000major industrial sitesworldwide to
tracktheir utilization asa basisfor avarietyof globaleconomicstudies.Nospecificdatatypesor
fusiontechniquesarementionedin this conceptualpaper.
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Summary of Types of Data Output Produced
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There were a total of 12 presentations at the IAPR TC7 Workshop. Most of them dealt with the
description of systems. While the two previous summaries discussed the input and processing
aspects of these systems, this summary discussed the output aspect.

Many contributions were concerned with an improvement or a kind of refinement of results by
use of multisource data. The improvements are either in overall accuracy or in robustness. The
output may be categorized as either a better segmentation, an improved symbolic description of
the scene, or a more robust classification. These "improvement-papers" are:

• Jon Robinson: The output is a refined data set of edges (which can be translated
into a refined ground cover label map).

• Tom Sauer: The analysis process deals with classification, region analysis and
spatial information. In its current state of development the system
is separating vegetation from background. The final output is the
percentage of ground coverage by specific vegetation classes

* N. Nandakumar: In this combination of thermal and visual information, the thermal
capacity is calculated and used to improve a segmentation, and to
label various classes like pavement, vegetation, car, etc.

• H. Kim and P. H. Swain (presented by J. C. Tilton): The integration of multispectral and
DEM data leads to a more robust classification.

• Frederick Perlant:

• Jeffrey Shufelt:
These two papers from David McKeown's group at Carnegie-
Mellon University discuss information fusion. There are several
different processes run on the same image or on different images
(stereo pair). The output of these processes in than fused yielding
an improved result. In Peflant's work the output is a segmentation.
Shufelt ends up with a set of boundaries delineating the objects of
interest (e. g. houses).

• Axel Pinz: Having several images of the same scene, the first step of

.process!ng leads to several symbolic description of this scene. The
integration (fusion) of theses results yields an improved and more
robust symbolic description of the scene objects (in this case, trees).
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The following contributions cannot be categorized so easily (as "improvement-papers"). It
seems that the desired output of these systems wouldn't be possible without multisource data

integration:

Walter Kropatsch: The integration of SAR, DEM and knowledge results in a geocoded
SAR image. Furthermore, Dr. Kropatsch can map additional
information (e.g., slope) into the original SAR image, providing
means for a better interpretation of the original image.

• Eric Rignot: This is going to be a very huge system. The output will be a pack

of registered and resampled data at uniform scale.

• C. Banninger: The integration of a few Landsat pixels with a very detailed ground
data set is used for an optimal positioning of the pixel grid. The

outputs of this process are correlation results and models.

• David Tilley: Since the original radar image of the ocean appear very uniform to
an human interpreter, the first task to solve is the proper
visualization of the data. Furthermore, Dr. Tllley hopes to gain

more insight into imaging mechanisms of SAR, and to uncover
information in the speckles.

• Robbin Hough: A database systems of this kind would be able of producing many-
fold outputs depending on the query. It could be used as a tool for
economic forecasting, planning and analysis.
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